Do you want to publish a course? Click here

Deuteron-deuteron scattering above four-nucleon breakup threshold

138   0   0.0 ( 0 )
 Added by Arnoldas Deltuva
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Deuteron-deuteron elastic scattering and transfer reactions in the energy regime above four-nucleon breakup threshold are described by solving exact four-particle equations for transition operators. Several realistic nuclear interaction models are used, including the one with effective many-nucleon forces generated by the explicit $Delta$-isobar excitation; the Coulomb force between protons is taken into account as well. Differential cross sections, deuteron analyzing powers, outgoing nucleon polarization, and deuteron-to-neutron polarization transfer coefficients are calculated at 10 MeV deuteron energy. Overall good agreement with the experimental data is found. The importance of breakup channels is demonstrated.



rate research

Read More

The electromagnetic polarizabilities of the nucleon are fundamental nucleon-structure observables that characterize its response to external electromagnetic fields. The neutron polarizabilities can be accessed from Compton-scattering data on light nuclear targets. Recent measurements of the differential cross section for Compton scattering on the deuteron below the pion-production threshold have decreased the uncertainties in the neutron polarizabilities, yet the proton polarizabilities remain known substantially more accurately. As the sensitivity of the cross section to the polarizabilities increases with incident photon energy, measurements above the pion threshold may offer a way for an improved determination of the neutron polarizabilities. In this article, the first measurement of the cross section for Compton scattering on the deuteron above the pion-production threshold is presented.
The nucleon-nucleon J-matrix Inverse Scattering Potential JISP16 is applied to elastic nucleon-deuteron (Nd) scattering and the deuteron breakup process at the lab. nucleon energies up to 135 MeV. The formalism of the Faddeev equations is used to obtain 3N scattering states. We compare predictions based on the JISP16 force with data and with results based on various NN interactions: the CD Bonn, the AV18, the chiral force with the semi-local regularization at the 5th order of the chiral expansion and with low-momentum interactions obtained from the CD Bonn force as well as with the predictions from the combination of the AV18 NN interaction and the Urbana IX 3N force. JISP16 provides a satisfactory description of some observables at low energies but strong deviations from data as well as from standard and chiral potential predictions with increasing energy. However, there are also polarization observables at low energies for which the JISP16 predictions differ from those based on the other forces by a factor of two. The reason for such a behavior can be traced back to the P-wave components of the JISP16 force. At higher energies the deviations can be enhanced by an interference with higher partial waves and by the properties of the JISP16 deuteron wave function. In addition, we compare the energy and angular dependence of predictions based on the JISP16 force with the results of the low-momentum forces obtained with different values of the momentum cutoff parameter. We found that such low-momentum forces can be employed to interpret the Nd elastic scattering data only below some specific energy which depends on the cutoff parameter. Since JISP16 is defined in a finite oscillator basis, it has properties similar to low momentum interactions and its application to the description of Nd scattering data is limited to a low momentum transfer region.
The hadron-deuteron correlation function has attracted many interests as a potential method to access the three-hadron interactions. However, the weakly-bound nature of deuteron has not been considered in the preceding studies. In this study, the breakup effect of deuteron on the deuteron-$Xi^-$ ($d$-$Xi^-$) correlation function $C_{dXi^-}$ is investigated. The $d$-$Xi^-$ scattering is described by a nucleon-nucleon-$Xi$ three-body reaction model. The continuum-discretized coupled-channels method, which is a fully quantum-mechanical and non-perturbative reaction model, is adopted. $C_{dXi^-}$ turns out to be sensitive to the strong interaction and enhanced by the deuteron breakup effect by 6--8 % for the $d$-$Xi^-$ relative momentum below about 70 MeV/$c$. Low-lying neutron-neutron continuum states are responsible for this enhancement. Within the adopted model, the deuteron breakup effect on $C_{dXi^-}$ is found to be appreciable but not very significant. Except for the enhancement by several percent, studies on $C_{dXi^-}$ without the deuteron breakup effect can be justified.
Motivated by the recent measurement of proton-proton spin-correlation parameters up to 2.5 GeV laboratory energy, we investigate models for nucleon-nucleon (NN) scattering above 1 GeV. Signatures for a gradual failure of the traditional meson model with increasing energy can be clearly identified. Since spin effects are large up to tens of GeV, perturbative QCD cannot be invoked to fix the problems. We discuss various theoretical scenarios and come to the conclusion that we do not have a clear phenomenological understanding of the spin-dependence of the NN interaction above 1 GeV.
We present an account of the current status of the theoretical treatment of inclusive $(d,p)$ reactions in the breakup-fusion formalism, pointing to some applications and making the connection with current experimental capabilities. Three independent implementations of the reaction formalism have been recently developed, making use of different numerical strategies. The codes also originally relied on two different but equivalent representations, namely the prior (Udagawa-Tamura, UT) and the post (Ichimura-Austern-Vincent, IAV) representations. The different implementations have been benchmarked, and then applied to the Ca isotopic chain. The neutron-Ca propagator is described in the Dispersive Optical Model (DOM) framework, and the interplay between elastic breakup (EB) and non-elastic breakup (NEB) is studied for three Ca isotopes at two different bombarding energies. The accuracy of the description of different reaction observables is assessed by comparing with experimental data of $(d,p)$ on $^{40,48}$Ca. We discuss the predictions of the model for the extreme case of an isotope ($^{60}$Ca) currently unavailable experimentally, though possibly available in future facilities (nominally within production reach at FRIB). We explore the use of $(d,p)$ reactions as surrogates for $(n,gamma)$ processes, by using the formalism to describe the compound nucleus formation in a $(d,pgamma)$ reaction as a function of excitation energy, spin, and parity. The subsequent decay is then computed within a Hauser-Feshbach formalism. Comparisons between the $(d,pgamma)$ and $(n,gamma)$ induced gamma decay spectra are discussed to inform efforts to infer neutron captures from $(d,pgamma)$ reactions. Finally, we identify areas of opportunity for future developments, and discuss a possible path toward a predictive reaction theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا