Do you want to publish a course? Click here

Coulomb interaction rules timescales in potassium ion channel tunneling

192   0   0.0 ( 0 )
 Added by Sandra Denise Prado
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Assuming that the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, addition of moderate noise helps coherent ion transport.



rate research

Read More

There are many controversial and challenging discussions about quantum effects in microscopic structures in neurons of the human brain. The challenge is mainly because of quick decoherence of quantum states due to hot, wet and noisy environment of the brain which forbids long life coherence for brain processing. Despite these critical discussions, there are only a few number of published papers about numerical aspects of decoherence in neurons. Perhaps the most important issue is offered by Max Tegmark who has calculated decoherence times for the systems of ions and microtubules in neurons of the brain. In fact, Tegmark did not consider ion channels which are responsible for ions displacement through the membrane and are the building blocks of electrical membrane signals in the nervous system. Here, we would like to re-investigate decoherence times for ionic superposition states by using the data obtained via molecular dynamics simulations. Our main approach is according to what Tegmark has used before. In fact, Tegmark didnt consider the ion channel structure and his estimates are only simple approximations. In this paper, we focus on the small nano-scale part of KcsA ion channels which is called selectivity filter and has a key role in the operation of an ion channel. Our results for superposition states of potassium ions indicate that decoherence times are in the order of picoseconds which are 10-100 million times bigger than the order calculated by Tegmark. This decoherence time is still not enough for cognitive processing in the brain, however it can be adequate for quantum states of cooled ions in the filter to leave their quantum traces on the filter and action potentials.
144 - Mike Lisa 2016
The study of high energy collisions between heavy nuclei is a field unto itself, distinct from nuclear and particle physics. A defining aspect of heavy ion physics is the importance of a bulk, self-interacting system with a rich space-time substructure. I focus on the issue of timescales in heavy ion collisions, starting with proof from low-energy collisions that femtoscopy can, indeed, measure very long timescales. I then discuss the relativistic case, where detailed measurements over three orders of magnitude in energy reveal a timescale increase that might be due to a first-order phase transition. I discuss also consistency in evolution timescales as determined from traditional longitudinal sizes and a novel analysis using shape information.
Trapped-ion optical clocks are capable of achieving systematic fractional frequency uncertainties of $10^{-18}$ and possibly below. However, the stability of current ion clocks is fundamentally limited by the weak signal of single-ion interrogation. We present an operational, scalable platform for extending clock spectroscopy to arrays of Coulomb crystals consisting of several tens of ions, while allowing systematic shifts as low as $10^{-19}$. Using a newly developed technique, we observe 3D excess micromotion amplitudes inside a Coulomb crystal with atomic spatial resolution and sub-nanometer amplitude uncertainties. We show that in ion Coulomb crystals of 400$mu$m and 2mm length, time dilation shifts of In${}^+$ ions due to micromotion can be close to $1times10^{-19}$ and below $10^{-18}$, respectively. In previous ion traps, excess micromotion would have dominated the uncertainty budget for spectroscopy of even a few ions. By minimizing its contribution and providing a means to quantify it, this work opens up the path to precision spectroscopy in many-body ion systems, enabling entanglement-enhanced ion clocks and providing a well-controlled, strongly coupled quantum system.
Investigation of momentum space correlations of particles produced in high energy reactions requires taking final state interactions into account, a crucial point of any such analysis. Coulomb interaction between charged particles is the most important such effect. In small systems like those created in e+e- or p+p collisions, the so-called Gamow factor (valid for a point-like particle source) gives an acceptable description of the Coulomb interaction. However, in larger systems such as central or mid-central heavy ion collisions, more involved approaches are needed. In this paper we investigate the Coulomb final state interaction for Levy-type source functions that were recently shown to be of much interest for a refined description of the space-time picture of particle production in heavy-ion collisions.
We present a simple approximate analytical estimate for self-energy of a charge in the middle of cylindrical channel of a high permittivity epsilon_1 in a media of a low permittivity epsilon_2 (for the cases of infinitely long and comparatively short channels) and show that this estimate is in a good quantitative agreement with exact solution of Poisson equation. Further, using these estimates, we explain the observed a lower conductivity, caused by an increased the self-free-energy for ions, whose diameter is by ~1 angstrom less than that of the channel (as compared to ions, whose diameter is equal to that of the channel).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا