Do you want to publish a course? Click here

Probing Time Dilation in Coulomb Crystals in a high-precision Ion Trap

56   0   0.0 ( 0 )
 Added by Jonas Keller
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Trapped-ion optical clocks are capable of achieving systematic fractional frequency uncertainties of $10^{-18}$ and possibly below. However, the stability of current ion clocks is fundamentally limited by the weak signal of single-ion interrogation. We present an operational, scalable platform for extending clock spectroscopy to arrays of Coulomb crystals consisting of several tens of ions, while allowing systematic shifts as low as $10^{-19}$. Using a newly developed technique, we observe 3D excess micromotion amplitudes inside a Coulomb crystal with atomic spatial resolution and sub-nanometer amplitude uncertainties. We show that in ion Coulomb crystals of 400$mu$m and 2mm length, time dilation shifts of In${}^+$ ions due to micromotion can be close to $1times10^{-19}$ and below $10^{-18}$, respectively. In previous ion traps, excess micromotion would have dominated the uncertainty budget for spectroscopy of even a few ions. By minimizing its contribution and providing a means to quantify it, this work opens up the path to precision spectroscopy in many-body ion systems, enabling entanglement-enhanced ion clocks and providing a well-controlled, strongly coupled quantum system.



rate research

Read More

In this article we describe the design, construction and implementation of our ion-atom hybrid system incorporating a high resolution time of flight mass spectrometer (TOFMS). Potassium atoms ($^{39}$K) in a Magneto Optical Trap (MOT) and laser cooled calcium ions ($^{40}$Ca$^+$) in a linear Paul trap are spatially overlapped and the combined trap is integrated with a TOFMS for radial extraction and detection of reaction products. We also present some experimental results showing interactions between $^{39}$K$^+$ and $^{39}$K, $^{40}$Ca$^+$ and $^{39}$K$^+$ as well as $^{40}$Ca$^+$ and $^{39}$K pairs. Finally, we discuss prospects for cooling CaH$^+$ molecular ions in the hybrid ion-atom system.
139 - A. Hashemloo , C. M. Dion 2017
We study the quantum stability of the dynamics of ions in a Paul trap. We revisit the results of Wang et al. [Phys. Rev. A 52, 1419 (1995)], which showed that quantum trajectories did not have the same region of stability as their classical counterpart, contrary to what is obtained from a Floquet analysis of the motion in the periodic trapping field. Using numerical simulations of the full wave-packet dynamics, we confirm that the classical trapping criterion are fully applicable to quantum motion, when considering both the expectation value of the position of the wave packet and its width.
For conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent primarily on their charge-to-mass ratio $Q/m$. In contrast, storing ions within an optical dipole trap results in state-dependent confinement. Here we experimentally study optical dipole potentials for $^{138}mathrm{Ba}^+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm. We prepare the ions in either the $6mathrm{S}_{mathrm{1/2}}$ electronic ground or the $5mathrm{D}_{mathrm{3/2}}$/ $5mathrm{D}_{mathrm{5/2}}$ metastable excited state and probe the relative strength and polarity of the potential. On the one hand, we apply our findings to selectively remove ions from a Coulomb crystal, despite all ions sharing the same $Q/m$. On the other hand, we deterministically purify the trapping volume from parasitic ions in higher-energy orbits, resulting in reliable isolation of Coulomb crystals down to a single ion within a radio-frequency trap.
68 - H. Haeffner , S. Gulde , M. Riebe 2002
Using optical Ramsey interferometry, we precisely measure the laser-induced AC-stark shift on the $S_{1/2}$ -- $D_{5/2}$ quantum bit transition near 729 nm in a single trapped $^{40}$Ca$^+$ ion. We cancel this shift using an additional laser field. This technique is of particular importance for the implementation of quantum information processing with cold trapped ions. As a simple application we measure the atomic phase evolution during a $n times 2pi$ rotation of the quantum bit.
Polar molecules are desirable systems for quantum simulations and cold chemistry. Molecular ions are easily trapped, but a bias electric field applied to polarize them tends to accelerate them out of the trap. We present a general solution to this issue by rotating the bias field slowly enough for the molecular polarization axis to follow but rapidly enough for the ions to stay trapped. We demonstrate Ramsey spectroscopy between Stark-Zeeman sublevels in 180Hf19F+ with a coherence time of 100 ms. Frequency shifts arising from well-controlled topological (Berry) phases are used to determine magnetic g-factors. The rotating-bias-field technique may enable using trapped polar molecules for precision measurement and quantum information science, including the search for an electron electric dipole moment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا