Do you want to publish a course? Click here

Energy Barrier for an Ion Crossing an Intra-Membrane Channel

113   0   0.0 ( 0 )
 Added by Dmitry Ivankov
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a simple approximate analytical estimate for self-energy of a charge in the middle of cylindrical channel of a high permittivity epsilon_1 in a media of a low permittivity epsilon_2 (for the cases of infinitely long and comparatively short channels) and show that this estimate is in a good quantitative agreement with exact solution of Poisson equation. Further, using these estimates, we explain the observed a lower conductivity, caused by an increased the self-free-energy for ions, whose diameter is by ~1 angstrom less than that of the channel (as compared to ions, whose diameter is equal to that of the channel).



rate research

Read More

We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a non-monotonic function of the elastic constant $mu$, and reaches a peak at $mu=mu^ast$. For $mu < mu^ast$ the system fails to reach a steady state and the membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant $ u$ for all nonzero values of $ u$. Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time-scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.
This paper is a continuation of a previous work about the study of the survival probability modelizing the molecular predissociation in the Born-Oppenheimer framework. Here we consider the critical case where the reference energy corresponds to the value of a crossing of two electronic levels, one of these two levels being confining while the second dissociates. We show that the survival probability associated to a certain initial state is a sum of the usual time-dependent exponential contribution, and a reminder term that is jointly polynomially small with respect to the time and the semiclassical parameter. We also compute explicitly the main contribution of the remainder.
Many biological functions rely on the reshaping of cell membranes, in particular into nanotubes, which are covered in vivo by dynamic actin networks. Nanotubes are subject to thermal fluctuations, but the effect of these on cell functions is unknown. Here, we form nanotubes from liposomes using an optically trapped bead adhering to the liposome membrane. From the power spectral density of this bead, we study the nanotube fluctuations in the range of membrane tensions measured in vivo. We show that an actin sleeve covering the nanotube damps its high frequency fluctuations because of the network viscoelasticity. Our work paves the way for further studies on the effect of nanotube fluctuations in cellular functions.
Microscopy of polymer electrolyte membranes that have undergone operation under fuel cell conditions, have revealed a well defined band of platinum in the membrane. Here, we propose a physics based model that captures the mechanism of platinum precipitation in the polymer electrolyte membrane. While platinum is observed throughout the membrane, the preferential growth of platinum at the band of platinum is dependent on the electrochemical potential distribution in the membrane. In this paper, the location of the platinum band is calculated as a function of the gas concentration at the cathode and anode, gas diffusion coefficients and solubility constants of the gases in the membrane, which are functions of relative humidity. Under H2/N2 conditions the platinum band is located near the cathode-membrane interface, as the oxygen concentration in the cathode gas stream increases and/or the hydrogen concentration in the anode gas stream decreases, the band moves towards the anode. The model developed in this paper agrees with the set of experimental data on the platinum band location and the platinum particle distribution and size.
We study the existence and location of the resonances of a $2times 2$ semiclassical system of coupled Schrodinger operators, in the case where the two electronic levels cross at some point, and one of them is bonding, while the other one is anti-bonding. Considering energy levels just above that of the crossing, we find the asymptotics of both the real parts and the imaginary parts of the resonances close to such energies. This is a continuation of our previous works where we considered energy levels around that of the crossing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا