Do you want to publish a course? Click here

Thermodynamic phases in two-dimensional active matter

175   0   0.0 ( 0 )
 Added by Werner Krauth
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Active matter has been intensely studied for its wealth of intriguing properties such as collective motion, motility-induced phase separation (MIPS), and giant fluctuations away from criticality. However, the precise connection of active materials with their equilibrium counterparts has remained unclear. For two-dimensional (2D) systems, this is also because the experimental and theoretical understanding of the liquid, hexatic, and solid equilibrium phases and their phase transitions is very recent. Here, we use self-propelled particles with inverse-power-law repulsions (but without alignment interactions) as a minimal model for 2D active materials. A kinetic Monte Carlo (MC) algorithm allows us to map out the complete quantitative phase diagram. We demonstrate that the active system preserves all equilibrium phases, and that phase transitions are shifted to higher densities as a function of activity. The two-step melting scenario is maintained. At high activity, a critical point opens up a gas-liquid MIPS region. We expect that the independent appearance of two-step melting and of MIPS is generic for a large class of two-dimensional active systems.



rate research

Read More

These notes focus on the description of the phases of matter in two dimensions. Firstly, we present a brief discussion of the phase diagrams of bidimensional interacting passive systems, and their numerical and experimental measurements. The presentation will be short and schematic. We will complement these notes with a rather complete bibliography that should guide the students in their study of the development of this very rich subject over the last century. Secondly, we summarise very recent results on the phase diagrams of active Brownian disks and active dumbbell systems in two dimensions. The idea is to identify all the phases and to relate, when this is possible, the ones found in the passive limit with the ones observed at large values of the activity, at high and low densities, and for both types of constituents. Proposals for the mechanisms leading to these phases will be discussed. The physics of bidimensional active systems open many questions, some of which will be listed by the end of the Chapter.
We study pressurised self-avoiding ring polymers in two dimensions using Monte Carlo simulations, scaling arguments and Flory-type theories, through models which generalise the model of Leibler, Singh and Fisher [Phys. Rev. Lett. Vol. 59, 1989 (1987)]. We demonstrate the existence of a thermodynamic phase transition at a non-zero scaled pressure $tilde{p}$, where $tilde{p} = Np/4pi$, with the number of monomers $N rightarrow infty$ and the pressure $p rightarrow 0$, keeping $tilde{p}$ constant, in a class of such models. This transition is driven by bond energetics and can be either continuous or discontinuous. It can be interpreted as a shape transition in which the ring polymer takes the shape, above the critical pressure, of a regular N-gon whose sides scale smoothly with pressure, while staying unfaceted below this critical pressure. In the general case, we argue that the transition is replaced by a sharp crossover. The area, however, scales with $N^2$ for all positive $p$ in all such models, consistent with earlier scaling theories.
125 - L. Wang , C. Yang , M. T. Dove 2019
A hallmark of a thermodynamic phase transition is the qualitative change of system thermodynamic properties such as energy and heat capacity. On the other hand, no phase transition is thought to operate in the supercritical state of matter and, for this reason, it was believed that supercritical thermodynamic properties vary smoothly and without any qualitative changes. Here, we perform extensive molecular dynamics simulations in a wide temperature range and find that a deeply supercritical state is thermodynamically heterogeneous, as witnessed by different temperature dependence of energy, heat capacity and its derivatives at low and high temperature. The evidence comes from three different methods of analysis, two of which are model-independent. We propose a new definition of the relative width of the thermodynamic crossover and calculate it to be in the fairly narrow relative range of 13-20%. On the basis of our results, we relate the crossover to the supercritical Frenkel line.
As a result of nonequilibrium forces, purely repulsive self-propelled particles undergo macrophase separation between a dense and a dilute phase. We present a thorough study of the ordering kinetics of such motility-induced phase separation (MIPS) in active Brownian particles in two dimensions, and we show that it is generically accompanied by microphase separation. The growth of the dense phase follows a law akin to the one of liquid-gas phase separation. However, it is made of a mosaic of hexatic microdomains whose size does not coarsen indefinitely, leaving behind a network of extended topological defects from which microscopic dilute bubbles arise. The characteristic length of these finite-size structures increases with activity, independently of the choice of initial conditions.
Collective motion is often modeled within the framework of active fluids, where the constituent active particles, when interactions with other particles are switched off, perform normal diffusion at long times. However, in biology, single-particle superdiffusion and fat-tailed displacement statistics are also widespread. The collective properties of interacting systems exhibiting such anomalous diffusive dynamics, which we call active Levy matter, cannot be captured by current active fluid theories. Here, we formulate a hydrodynamic theory of active Levy matter by coarse-graining a microscopic model of aligning polar active particles that perform superdiffusion akin to Levy flights. Applying a linear stability analysis on the hydrodynamic equations at the onset of collective motion, we find that, in contrast to its conventional counterpart, the order-disorder transition can become critical. We then estimate the corresponding critical exponents by finite size scaling analysis of numerical simulations. Our work highlights the novel physics in active matter that integrates both anomalous diffusive motility and inter-particle interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا