Do you want to publish a course? Click here

Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System

113   0   0.0 ( 0 )
 Added by Pasquale Digregorio
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

As a result of nonequilibrium forces, purely repulsive self-propelled particles undergo macrophase separation between a dense and a dilute phase. We present a thorough study of the ordering kinetics of such motility-induced phase separation (MIPS) in active Brownian particles in two dimensions, and we show that it is generically accompanied by microphase separation. The growth of the dense phase follows a law akin to the one of liquid-gas phase separation. However, it is made of a mosaic of hexatic microdomains whose size does not coarsen indefinitely, leaving behind a network of extended topological defects from which microscopic dilute bubbles arise. The characteristic length of these finite-size structures increases with activity, independently of the choice of initial conditions.



rate research

Read More

We establish the complete phase diagram of self-propelled hard disks in two spatial dimensions from the analysis of the equation of state and the statistics of local order parameters. The equilibrium melting scenario is maintained at small activities, with coexistence between active liquid and hexatic order, followed by a proper hexatic phase and a further transition to an active solid. As activity increases, the emergence of hexatic and solid order is shifted towards higher densities. Above a critical activity and for a certain range of packing fractions, the system undergoes MIPS and demixes into low and high density phases; the latter can be either disordered (liquid) or ordered (hexatic or solid) depending on activity.
256 - M. E. Cates , J. Tailleur 2012
Active Brownian particles (ABPs, such as self-phoretic colloids) swim at fixed speed $v$ along a body-axis ${bf u}$ that rotates by slow angular diffusion. Run-and-tumble particles (RTPs, such as motile bacteria) swim with constant $u$ until a random tumble event suddenly decorrelates the orientation. We show that when the motility parameters depend on density $rho$ but not on ${bf u}$, the coarse-grained fluctuating hydrodynamics of interacting ABPs and RTPs can be mapped onto each other and are thus strictly equivalent. In both cases, a steeply enough decreasing $v(rho)$ causes phase separation in dimensions $d=2,3$, even when no attractive forces act between the particles. This points to a generic role for motility-induced phase separation in active matter. However, we show that the ABP/RTP equivalence does not automatically extend to the more general case of $u$-dependent motilities.
207 - Zhan Ma , Ran Ni 2021
Using computer simulations and dynamic mean-field theory, we demonstrate that fast enough rotation of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional motility induced phase separation (MIPS). Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The non-vanishing current in non-equilibrium steady states microscopically originates from the motility ``relieved by automatic rotation, which breaks the detailed balance at the continuum level. This mechanism sheds light on the understanding of dynamic clusters formation observed in a variety of active matter systems, and may help examine the generalization of effective thermodynamic concepts developed in the context of MIPS.
We study the stationary dynamics of an active interacting Brownian particle system. We measure the violations of the fluctuation dissipation theorem, and the corresponding effective temperature, in a locally resolved way. Quite naturally, in the homogeneous phases the diffusive properties and effective temperature are also homogeneous. Instead, in the inhomogeneous phases (close to equilibrium and within the MIPS sector) the particles can be separated in two groups with different diffusion properties and effective temperatures. Notably, at fixed activity strength the effective temperatures in the two phases remain distinct and approximately constant within the MIPS region, with values corresponding to the ones of the whole system at the boundaries of this sector of the phase diagram. We complement the study of the globally averaged properties with the theoretical and numerical characterization of the fluctuation distributions of the single particle diffusion, linear response, and effective temperature in the homogeneous and inhomogeneous phases. We also distinguish the behavior of the (time-delayed) effective temperature from the (instantaneous) kinetic temperature, showing that the former is independent on the friction coefficient.
We study analytically the single-trajectory spectral density (STSD) of an active Brownian motion as exhibited, for example, by the dynamics of a chemically-active Janus colloid. We evaluate the standardly-defined spectral density, i.e. the STSD averaged over a statistical ensemble of trajectories in the limit of an infinitely long observation time $T$, and also go beyond the standard analysis by considering the coefficient of variation $gamma$ of the distribution of the STSD. Moreover, we analyse the finite-$T$ behaviour of the STSD and $gamma$, determine the cross-correlations between spatial components of the STSD, and address the effects of translational diffusion on the functional forms of spectral densities. The exact expressions that we obtain unveil many distinctive features of active Brownian motion compared to its passive counterpart, which allow to distinguish between these two classes based solely on the spectral content of individual trajectories.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا