Do you want to publish a course? Click here

A support theorem for nested Hilbert schemes of planar curves

142   0   0.0 ( 0 )
 Added by Camilla Felisetti
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Consider a family of integral complex locally planar curves. We show that under some assumptions on the basis, the relative nested Hilbert scheme is smooth. In this case, the decomposition theorem of Beilinson, Bernstein and Deligne asserts that the pushforward of the constant sheaf on the relative nested Hilbert scheme splits as a direct sum of shifted semisimple perverse sheaves. We will show that no summand is supported in positive codimension.



rate research

Read More

We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration.
184 - Mahir Bilen Can 2007
In this paper we study the tangent spaces of the smooth nested Hilbert scheme $ Hil{n,n-1}$ of points in the plane, and give a general formula for computing the Euler characteristic of a $TT^2$-equivariant locally free sheaf on $Hil{n,n-1}$. Applying our result to a particular sheaf, we conjecture that the result is a polynomial in the variables $q$ and $t$ with non-negative integer coefficients . We call this conjecturally positive polynomial as textsl{the nested $q,t$-Cat alan series}, for it has many conjectural properties similar to that of the $q,t $-Catalan series.
We express nested Hilbert schemes of points and curves on a smooth projective surface as virtual resolutions of degeneracy loci of maps of vector bundles on smooth ambient spaces. We show how to modify the resulting obstruction theories to produce the virtual cycles of Vafa-Witten theory and other sheaf-counting problems. The result is an effective way of calculating invariants (VW, SW, local PT and local DT) via Thom-Porteous-like Chern class formulae.
109 - M. Duerr , Ch. Okonek 2004
In [DKO] we constructed virtual fundamental classes $[[ Hilb^m_V ]]$ for Hilbert schemes of divisors of topological type m on a surface V, and used these classes to define the Poincare invariant of V: (P^+_V,P^-_V): H^2(V,Z) --> Lambda^* H^1(V,Z) x Lambda^* H^1(V,Z) We conjecture that this invariant coincides with the full Seiberg-Witten invariant computed with respect to the canonical orientation data. In this note we prove that the existence of an integral curve $C subset V$ induces relations between some of these virtual fundamental classes $[[Hilb^m_V ]]$. The corresponding relations for the Poincare invariant can be considered as algebraic analoga of the fundamental relations obtained in [OS].
144 - Paolo Lella 2012
In this PhD thesis we propose an algorithmic approach to the study of the Hilbert scheme. Developing algorithmic methods, we also obtain general results about Hilbert schemes. In Chapter 1 we discuss the equations defining the Hilbert scheme as subscheme of a suitable Grassmannian and in Chapter 5 we determine a new set of equations of degree lower than the degree of equations known so far. In Chapter 2 we study the most important objects used to project algorithmic techniques, namely Borel-fixed ideals. We determine an algorithm computing all the saturated Borel-fixed ideals with Hilbert polynomial assigned and we investigate their combinatorial properties. In Chapter 3 we show a new type of flat deformations of Borel-fixed ideals which lead us to give a new proof of the connectedness of the Hilbert scheme. In Chapter 4 we construct families of ideals that generalize the notion of family of ideals sharing the same initial ideal with respect to a fixed term ordering. Some of these families correspond to open subsets of the Hilbert scheme and can be used to a local study of the Hilbert scheme. In Chapter 6 we deal with the problem of the connectedness of the Hilbert scheme of locally Cohen-Macaulay curves in the projective 3-space. We show that one of the Hilbert scheme considered a good candidate to be non-connected, is instead connected. Moreover there are three appendices that present and explain how to use the implementations of the algorithms proposed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا