No Arabic abstract
In [DKO] we constructed virtual fundamental classes $[[ Hilb^m_V ]]$ for Hilbert schemes of divisors of topological type m on a surface V, and used these classes to define the Poincare invariant of V: (P^+_V,P^-_V): H^2(V,Z) --> Lambda^* H^1(V,Z) x Lambda^* H^1(V,Z) We conjecture that this invariant coincides with the full Seiberg-Witten invariant computed with respect to the canonical orientation data. In this note we prove that the existence of an integral curve $C subset V$ induces relations between some of these virtual fundamental classes $[[Hilb^m_V ]]$. The corresponding relations for the Poincare invariant can be considered as algebraic analoga of the fundamental relations obtained in [OS].
Let V be a convex vector bundle over a smooth projective manifold X, and let Y be the subset of X which is the zero locus of a regular section of V. This mostly expository paper discusses a conjecture which relates the virtual fundamental classes of X and Y. Using an argument due to Gathmann, we prove a special case of the conjecture. The paper concludes with a discussion of how our conjecture relates to the mirror theorems in the literature.
We construct the etale motivic Borel-Moore homology of derived Artin stacks. Using a derived version of the intrinsic normal cone, we construct fundamental classes of quasi-smooth derived Artin stacks and demonstrate functoriality, base change, excess intersection, and Grothendieck-Riemann-Roch formulas. These classes also satisfy a general cohomological Bezout theorem which holds without any transversity hypotheses. The construction is new even for classical stacks and as one application we extend Gabbers proof of the absolute purity conjecture to Artin stacks.
We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration.
Consider a family of integral complex locally planar curves. We show that under some assumptions on the basis, the relative nested Hilbert scheme is smooth. In this case, the decomposition theorem of Beilinson, Bernstein and Deligne asserts that the pushforward of the constant sheaf on the relative nested Hilbert scheme splits as a direct sum of shifted semisimple perverse sheaves. We will show that no summand is supported in positive codimension.
Let $X$ be a projective K3 surfaces. In two examples where there exists a fine moduli space $M$ of stable vector bundles on $X$, isomorphic to a Hilbert scheme of points, we prove that the universal family $mathcal{E}$ on $Xtimes M$ can be understood as a complete flat family of stable vector bundles on $M$ parametrized by $X$, which identifies $X$ with a smooth connected component of some moduli space of stable sheaves on $M$.