Do you want to publish a course? Click here

Diffusion of Elements in the Interstellar Medium in Early-Type Galaxies

90   0   0.0 ( 0 )
 Added by Pavel Medvedev
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the role of diffusion in the redistribution of elements in the hot interstellar medium (ISM) of early-type galaxies. It is well known that gravitational sedimentation can affect significantly the abundances of helium and heavy elements in the intracluster gas of massive galaxy clusters. The self-similarity of the temperature profiles and tight mass--temperature relation of relaxed cool-core clusters suggest that the maximum effect of sedimentation take place in the most massive virialized objects in the Universe. However, Chandra and XMM-Newton observations demonstrate more complex scaling relations between the masses of early-type galaxies and other parameters, such as the ISM temperature and gas mass fraction. An important fact is that early-type galaxies can show both decreasing and increasing radial temperature profiles. We have calculated the diffusion based on the observed gas density and temperature distributions for 13 early-type galaxies that belonging to the different environments and cover a wide range of X-ray luminosities. To estimate the maximum effect of sedimentation and thermal diffusion, we have solved the full set of Burgers equations for a non-magnetized ISM plasma. The results obtained demonstrate a considerable increase of the He/H ratio within one effective radius for all galaxies of our sample. For galaxies with a flat or declining radial temperature profile the average increase of the helium abundance is 60% in one billion years of diffusion. The revealed effect can introduce a significant bias in the metal abundance measurements based on X-ray spectroscopy and can affect the evolution of stars that could be formed from a gas with a high helium abundance.



rate research

Read More

We have analyzed 17 early-type galaxies, 13 ellipticals and 4 S0s, observed with Suzaku, and investigated metal abundances (O, Mg, Si, and Fe) and abundance ratios (O/Fe, Mg/Fe, and Si/Fe) in the interstellar medium (ISM). The emission from each on-source region, which is 4 times effective radius, r_e, is reproduced with one- or two- temperature thermal plasma models as well as a multi-temperature model, using APEC plasma code v2.0.1. The multi-temperature model gave almost the same abundances and abundance ratios with the 1T or 2T models. The weighted averages of the O, Mg, Si, and Fe abundances of all the sample galaxies derived from the multi-temperature model fits are 0.83+-0.04, 0.93+-0.03, 0.80+-0.02, and 0.80+-0.02 solar, respectively, in solar units according to the solar abundance table by Lodders (2003). These abundances show no significant dependence on the morphology and environment. The systematic differences in the derived metal abundances between the version 2.0.1 and 1.3.1 of APEC plasma codes were investigated. The derived O and Mg abundances in the ISM agree with the stellar metallicity within a aperture with a radius of one r_e derived from optical spectroscopy. From these results, we discuss the past and present SN Ia rates and star formation histories in early-type galaxies.
We study the structure of spatially resolved, line-of-sight velocity dispersion for galaxies in the Epoch of Reionization (EoR) traced by [CII] $158murm{m}$ line emission. Our laboratory is a simulated prototypical Lyman-break galaxy, Freesia, part of the SERRA suite. The analysis encompasses the redshift range 6 < z < 8, when Freesia is in a very active assembling phase. We build velocity dispersion maps for three dynamically distinct evolutionary stages (Spiral Disk at z=7.4, Merger at z=8.0, and Disturbed Disk at z=6.5) using [CII] hyperspectral data cubes. We find that, at a high spatial resolution of 0.005 ($simeq 30 pc$), the luminosity-weighted average velocity dispersion is $sigma_{rm{CII}}$~23-38 km/s with the highest value belonging to the highly-structured Disturbed Disk stage. Low resolution observations tend to overestimate $sigma_{rm CII}$ values due to beam smearing effects that depend on the specific galaxy structure. For an angular resolution of 0.02 (0.1), the average velocity dispersion is 16-34% (52-115%) larger than the actual one. The [CII] emitting gas in Freesia has a Toomre parameter $mathcal{Q}$~0.2 and a rotational-to-dispersion ratio of $v_{rm c}/sigma$~ 7 similar to that observed in z=2-3 galaxies. The primary energy source for the velocity dispersion is due to gravitational processes, such as merging/accretion events; energy input from stellar feedback is generally subdominant (< 10%). Finally, we find that the resolved $sigma_{rm{CII}} - {Sigma}_{rm SFR}$ relation is relatively flat for $0.02<{Sigma}_{rm SFR}/{{rm M}_{odot}} mathrm{yr}^{-1} {mathrm kpc}^{-2} < 30$, with the majority of data lying on the derived analytical relation $sigma propto Sigma_{rm SFR}^{5/7}$. At high SFR, the increased contribution from stellar feedback steepens the relation, and $sigma_{rm{CII}}$ rises slightly.
We examine the annihilation of positrons on polycyclic aromatic hydrocarbon (PAH) molecules in interstellar medium conditions. We estimate the annihilation rates of positrons on PAHs by a semi-empirical approach. We show that PAHs can play a significant role in the overall galactic positron annihilation picture and use the annihilation rates and INTEGRAL galactic emission measurements to constrain the amount of PAHs present in the ISM. We find an upper limit of 4.6 x 10^-7 for the PAH abundance.
An important aspect of quenching star formation is the removal of the cold interstellar medium (ISM; non-ionised gas and dust) from a galaxy. In addition, dust grains can be destroyed in a hot or turbulent medium. The adopted timescale of dust removal usually relies on uncertain theoretical estimates. It is tricky to track the dust removal, because usually dust is constantly replenished by consecutive generations of stars. Our objective is to measure observationally the timescale of dust removal. We here explore an approach to select galaxies which do have detectable amounts of dust and cold ISM but exhibit a low current dust production rate. Any decrease of the dust and gas content as a function of the age of such galaxies therefore must be attributed to processes governing the ISM removal. We used a sample of galaxies detected by Herschel in the far-infrared with visually assigned early-type morphology or spirals with red colours. We also obtained JCMT/SCUBA-2 observations for five of them. We discovered an exponential decline of the dust-to-stellar mass ratio with age, which we interpret as an evolutionary trend of dust removal from these galaxies. For the first time we directly measure the dust removal timescale in such galaxies to be tau=(2.5+-0.4) Gyr (the corresponding half-life time is (1.75+-0.25) Gyr). This quantity may be used in models in which it must be assumed a priori and cannot be derived. Any process which removes dust in these galaxies, such as dust grain destruction, cannot happen on shorter timescales. The timescale is comparable to the quenching timescales found in simulations for galaxies with similar stellar masses. The dust is likely of internal, not external origin. It was either formed in the past directly by supernovae, or from seeds produced by SNe and with grain growth in the ISM contributing substantially to the dust mass accumulation.
The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White & Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via thermal conduction once being overrun by the expanding shock. Their analytical model made detailed predictions regarding temperature, density and emission profiles as well as shock evolution. We present numerical hydrodynamical models in 2D and 3D including thermal conduction, testing the White & Long model and presenting results for the evolution and emission from remnants evolving in a cloudy medium. We find that, while certain general results of the White & Long model hold, such as the way the remnants expand and the flattening of the X-ray surface brightness distribution, in detail there are substantial differences. In particular we find that the X-ray luminosity is dominated by emission from shocked cloud gas early on, leading to a bright peak which then declines and flattens as evaporation becomes more important. In addition, the effects of thermal conduction on the intercloud gas, which is not included in the White & Long model, are important and lead to further flattening of the X-ray brightness profile as well as lower X-ray emission temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا