No Arabic abstract
We study the structure of spatially resolved, line-of-sight velocity dispersion for galaxies in the Epoch of Reionization (EoR) traced by [CII] $158murm{m}$ line emission. Our laboratory is a simulated prototypical Lyman-break galaxy, Freesia, part of the SERRA suite. The analysis encompasses the redshift range 6 < z < 8, when Freesia is in a very active assembling phase. We build velocity dispersion maps for three dynamically distinct evolutionary stages (Spiral Disk at z=7.4, Merger at z=8.0, and Disturbed Disk at z=6.5) using [CII] hyperspectral data cubes. We find that, at a high spatial resolution of 0.005 ($simeq 30 pc$), the luminosity-weighted average velocity dispersion is $sigma_{rm{CII}}$~23-38 km/s with the highest value belonging to the highly-structured Disturbed Disk stage. Low resolution observations tend to overestimate $sigma_{rm CII}$ values due to beam smearing effects that depend on the specific galaxy structure. For an angular resolution of 0.02 (0.1), the average velocity dispersion is 16-34% (52-115%) larger than the actual one. The [CII] emitting gas in Freesia has a Toomre parameter $mathcal{Q}$~0.2 and a rotational-to-dispersion ratio of $v_{rm c}/sigma$~ 7 similar to that observed in z=2-3 galaxies. The primary energy source for the velocity dispersion is due to gravitational processes, such as merging/accretion events; energy input from stellar feedback is generally subdominant (< 10%). Finally, we find that the resolved $sigma_{rm{CII}} - {Sigma}_{rm SFR}$ relation is relatively flat for $0.02<{Sigma}_{rm SFR}/{{rm M}_{odot}} mathrm{yr}^{-1} {mathrm kpc}^{-2} < 30$, with the majority of data lying on the derived analytical relation $sigma propto Sigma_{rm SFR}^{5/7}$. At high SFR, the increased contribution from stellar feedback steepens the relation, and $sigma_{rm{CII}}$ rises slightly.
We investigate the relationship between the velocity dispersion of the gas and the SN rate and feedback efficiency in the ISM. We explore the constancy of the velocity dispersion profiles in the outer parts of galactic disks at~6-8 km s^-1, and the transition to the starburst regime. Our results show that a) SN driving leads to constant velocity dispersions of sig~6 km s^-1 for the total gas and sigHI~3 km s^-1 for the HI gas, independent of the SN rate, for values of the rate between 0.01-0.5 the Galactic rate R_{G},b) the position of the transition to the starburst regime at SFR/Area~5*10^-3-10^-2 M_sol yr^-1 kpc^-2 observed in the simulations, is in good agreement with the transition to the starburst regime in the observations, c) for the high SN rates, no HI gas is present in the simulations box, however, for the total gas velocity dispersion, there is good agreement between the models and the observations,d) at the intermediate SN rates R/R_{G}~0.5-1, taking into account the thermal broadening of the HI line helps reach a good agreement in that regime between the models and the observations,e) for R/R_{G}<0.5, sig and sigHI fall below the observed values by a factor of~2. However, a set of simulation with different values of epsilon indicates that for larger values of the supernova feedback efficiencies, velocity dispersions of the HI gas of the order of 5-6 km s^{-1} can be obtained, in closer agreement with the observations. The fact that for R/R_{G}<0.5, the HI gas velocity dispersions are a factor ~2 smaller than the observed values could result from the fact that we might have underestimated the SN feedback efficiency. It might also be an indication that other physical processes couple to the stellar feedback in order to produce the observed level of turbulence in galactic disks.
We have analyzed 17 early-type galaxies, 13 ellipticals and 4 S0s, observed with Suzaku, and investigated metal abundances (O, Mg, Si, and Fe) and abundance ratios (O/Fe, Mg/Fe, and Si/Fe) in the interstellar medium (ISM). The emission from each on-source region, which is 4 times effective radius, r_e, is reproduced with one- or two- temperature thermal plasma models as well as a multi-temperature model, using APEC plasma code v2.0.1. The multi-temperature model gave almost the same abundances and abundance ratios with the 1T or 2T models. The weighted averages of the O, Mg, Si, and Fe abundances of all the sample galaxies derived from the multi-temperature model fits are 0.83+-0.04, 0.93+-0.03, 0.80+-0.02, and 0.80+-0.02 solar, respectively, in solar units according to the solar abundance table by Lodders (2003). These abundances show no significant dependence on the morphology and environment. The systematic differences in the derived metal abundances between the version 2.0.1 and 1.3.1 of APEC plasma codes were investigated. The derived O and Mg abundances in the ISM agree with the stellar metallicity within a aperture with a radius of one r_e derived from optical spectroscopy. From these results, we discuss the past and present SN Ia rates and star formation histories in early-type galaxies.
The distribution of early-type galaxy velocity dispersions, phi(sigma), is measured using a sample drawn from the SDSS database. Its shape differs significantly from that which one obtains by simply using the mean correlation between luminosity, L, and velocity dispersion, sigma, to transform the luminosity function into a velocity function: ignoring the scatter around the mean sigma-L relation is a bad approximation. An estimate of the contribution from late-type galaxies is also made, which suggests that phi(sigma) is dominated by early-type galaxies at velocities larger than ~ 200 km/s.
We consider the role of diffusion in the redistribution of elements in the hot interstellar medium (ISM) of early-type galaxies. It is well known that gravitational sedimentation can affect significantly the abundances of helium and heavy elements in the intracluster gas of massive galaxy clusters. The self-similarity of the temperature profiles and tight mass--temperature relation of relaxed cool-core clusters suggest that the maximum effect of sedimentation take place in the most massive virialized objects in the Universe. However, Chandra and XMM-Newton observations demonstrate more complex scaling relations between the masses of early-type galaxies and other parameters, such as the ISM temperature and gas mass fraction. An important fact is that early-type galaxies can show both decreasing and increasing radial temperature profiles. We have calculated the diffusion based on the observed gas density and temperature distributions for 13 early-type galaxies that belonging to the different environments and cover a wide range of X-ray luminosities. To estimate the maximum effect of sedimentation and thermal diffusion, we have solved the full set of Burgers equations for a non-magnetized ISM plasma. The results obtained demonstrate a considerable increase of the He/H ratio within one effective radius for all galaxies of our sample. For galaxies with a flat or declining radial temperature profile the average increase of the helium abundance is 60% in one billion years of diffusion. The revealed effect can introduce a significant bias in the metal abundance measurements based on X-ray spectroscopy and can affect the evolution of stars that could be formed from a gas with a high helium abundance.
The density structure of the interstellar medium (ISM) determines where stars form and release energy, momentum, and heavy elements, driving galaxy evolution. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scale and galactic environment. Although dense star-forming gas likely emerges from a combination of instabilities, convergent flows, and turbulence, establishing the precise origin is challenging because it requires quantifying gas motion over many orders of magnitude in spatial scale. Here we measure the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span an unprecedented spatial dynamic range ($10^{-1}{-}10^3$ pc). We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from $0.3{-}400$ pc. These flows are coupled to regularly-spaced density enhancements that likely form via gravitational instabilities. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows. Our results demonstrate that ISM structure cannot be considered in isolation. Instead, its formation and evolution is controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.