Do you want to publish a course? Click here

Numerical Simulations of Supernova Remnant Evolution in a Cloudy Interstellar Medium

83   0   0.0 ( 0 )
 Added by Jonathan Slavin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White & Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via thermal conduction once being overrun by the expanding shock. Their analytical model made detailed predictions regarding temperature, density and emission profiles as well as shock evolution. We present numerical hydrodynamical models in 2D and 3D including thermal conduction, testing the White & Long model and presenting results for the evolution and emission from remnants evolving in a cloudy medium. We find that, while certain general results of the White & Long model hold, such as the way the remnants expand and the flattening of the X-ray surface brightness distribution, in detail there are substantial differences. In particular we find that the X-ray luminosity is dominated by emission from shocked cloud gas early on, leading to a bright peak which then declines and flattens as evaporation becomes more important. In addition, the effects of thermal conduction on the intercloud gas, which is not included in the White & Long model, are important and lead to further flattening of the X-ray brightness profile as well as lower X-ray emission temperatures.



rate research

Read More

Supernovae remnants (SNRs) represent a major feedback source from stars on the interstellar medium of galaxies. During the latest stage of supernovae explosions, shock waves produced by the initial blast modify the chemistry of gas and dust, inject kinetic energy in the surroundings, and may alter star formation characteristics. Simultaneously, gamma-ray emission is generated by the interaction between the ambiant medium and the cosmic rays. We study the stellar and interstellar contents of IC443, an evolved shell type SNR at a distance of 1.9 kpc, with an estimated age of 30 kyr. We aim to measure the mass of the gas within the extended G region, which corresponds to the peak of gamma-ray emission detected by VERITAS and Fermi. We performed 10x10 mapped observations of 12CO and 13CO J=1-0, J=2-1 and J=3-2 pure rotational lines, as well as C18O J=1-0 and J=2-1 obtained with the IRAM-30m and APEX telescopes. We first compared our data with local thermodynamic equilbrium (LTE) models. We estimated the optical depth of each line from the emission of the isotopologues 13CO and C18O. We used the population diagram and large velocity gradient (LVG) assumption to measure the column density, mass, and kinetic temperature of the gas using 12CO and 13CO lines. We used complementary data (stars, gas, and dust at multiple wavelengths) and infrared point source catalogues to search for protostar candidates. Our results emphasize how the mass associated with the ring-like structure and the cloudlet cannot be overlooked when quantifying the interaction of cosmic rays with the dense local medium. Additionally, the presence of numerous possible protostars in the region might represent a fresh source of CR, which must also be taken into account in the interpretation of gamma-ray observations in this region.
We use new large area far infrared maps ranging from 65 - 500 microns obtained with the AKARI and the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) missions to characterize the dust emission toward the Cassiopeia A supernova remnant (SNR). Using the AKARI high resolution data we find a new tepid dust grain population at a temperature of ~35K and with an estimated mass of 0.06 solar masses. This component is confined to the central area of the SNR and may represent newly-formed dust in the unshocked supernova ejecta. While the mass of tepid dust that we measure is insufficient by itself to account for the dust observed at high redshift, it does constitute an additional dust population to contribute to those previously reported. We fit our maps at 65, 90, 140, 250, 350, and 500 microns to obtain maps of the column density and temperature of cold dust (near 16 K) distributed throughout the region. The large column density of cold dust associated with clouds seen in molecular emission extends continuously from the surrounding interstellar medium to project on the SNR, where the foreground component of the clouds is also detectable through optical, X-ray, and molecular extinction. At the resolution available here, there is no morphological signature to isolate any cold dust associated only with the SNR from this confusing interstellar emission. Our fit also recovers the previously detected hot dust in the remnant, with characteristic temperature 100 K.
120 - Yi Yang 2016
We present multiple-epoch measurements of the size and surface brightness of the light echoes from supernova (SN) 2014J in the nearby starburst galaxy M82. Hubble Space Telescope (HST) ACS/WFC images were taken ~277 and ~416 days after B-band maximum in the filters F475W, F606W, and F775W. Observations with HST WFC3/UVIS images at epochs ~216 and ~365 days (Crotts 2015) are included for a more complete analysis. The images reveal the temporal evolution of at least two major light-echo components. The first one exhibits a filled ring structure with position-angle-dependent intensity. This radially extended, diffuse echo indicates the presence of an inhomogeneous interstellar dust cloud ranging from ~100 pc to ~500 pc in the foreground of the SN. The second echo component appears as an unresolved luminous quarter-circle arc centered on the SN. The wavelength dependence of scattering measured in different dust components suggests that the dust producing the luminous arc favors smaller grain sizes, while that causing the diffuse light echo may have sizes similar to those of the Milky Way dust. Smaller grains can produce an optical depth consistent with that along the supernova-Earth line of sight measured by previous studies around maximum light. Therefore, it is possible that the dust slab, from which the luminous arc arises, is also responsible for most of the extinction towards SN 2014J. The optical depths determined from the Milky Way-like dust in the scattering matters are lower than that produced by the dust slab.
High resolution Very Long Baseline Interferometry (VLBI) observations of Active Galactic Nuclei (AGN) revealed traveling and stationary or quasi-stationary radio-components in several blazar jets. The traveling ones are in general interpreted as shock waves generated by pressure perturbations injected at the jet nozzle. The stationary features can be interpreted as recollimation shocks in non-pressure matched jets if they show a quasi-symmetric bump in the spectral index distribution. In some jets there may be interactions between the two kinds of shocks. These shock--shock interactions are observable with VLBI techniques, and their signature should also be imprinted on the single--dish light curves. We performed relativistic hydrodynamic (RHD) simulations of over-pressured and pressure-matched jets. To simulate the shock interaction we injected a perturbation at the jet nozzle once a steady-state was reached. We computed the non-thermal emission (including adiabatic and synchotron losses) resulting from the simulation. We show that the injection of perturbations in a jet can produce a bump in emission at GHz frequencies previous to the main flare, which is produced when the perturbation fills the jet in the observers frame. The detailed analysis of our simulations and the non-thermal emission calculations show that interaction between a recollimation shock and traveling shock produce a typical and clear signature in both the single--dish light curves and in the VLBI observations: the flaring peaks are higher and delayed with respect to the evolution of a perturbation through a conical jet. This fact can allow to detect such interactions for stationary components lying outside of the region in where the losses are dominated by inverse Compton scattering.
241 - Joseph D. Gelfand 2009
A pulsar wind nebula inside a supernova remnant provides a unique insight into the properties of the central neutron star, the relativistic wind powered by its loss of rotational energy, its progenitor supernova, and the surrounding environment. In this paper, we present a new semi-analytic model for the evolution of such a pulsar wind nebula which couples the dynamical and radiative evolution of the pulsar wind nebulae, traces the evolution of the pulsar wind nebulae throughout the lifetime of the supernova remnant produced by the progenitor explosion, and predicts both the dynamical and radiative properties of the pulsar wind nebula during this period. We also discuss the expected evolution for a particular set of these parameters, and show it reproduces many puzzling features of known young and old pulsar wind nebulae. The model also predicts spectral features during different phases of its evolution detectable with new radio and gamma-ray observing facilities. Finally, this model has implications for determining if pulsar wind nebulae can explain the recent measurements of the cosmic ray positron fraction by PAMELA and the cosmic ray lepton spectrum by ATIC and HESS.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا