Do you want to publish a course? Click here

Reshaping of a Janus ring

210   0   0.0 ( 0 )
 Added by Andrei Zakharov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider reshaping of closed Janus filaments acquiring intrinsic curvature upon actuation of an active component -- a nematic elastomer elongating upon phase transition. Linear stability analysis establishes instability thresholds of circles with no imposed twist, dependent on the ratio $q$ of the intrinsic curvature to the inverse radius of the original circle. Twisted circles are proven to be absolutely unstable but the linear analysis well predicts the dependence of the looping number of the emerging configurations on the imposed twist. Modeling stable configurations by relaxing numerically the overall elastic energy detects multiple stable and metastable states with different looping numbers. The bifurcation of untwisted circles turns out to be subcritical, so that nonplanar shapes with a lower energy exist at $q$ below the critical value. The looping number of stable shapes generally increases with $q$.

rate research

Read More

150 - A.P. Zakharov , L.M. Pismen 2015
We consider three-dimensional reshaping of thin nemato-elastic sheets containing half-charged defects upon nematic-isotropic transition. Gaussian curvature, that can be evaluated analytically when the nematic texture is known, differs from zero in the entire domain and has a dipole or hexapole singularity, respectively, at defects of positive or negative sign. The latter kind of defects appears in not simply connected domains. Three-dimensional shapes dependent on boundary anchoring are obtained with the help of finite element computations.
We investigate the transport diffusivity of artificial microswimmers, a.k.a. Janus particles, moving in a sinusoidal channel in the absence of external biases. Their diffusion constant turns out to be quite sensitive to the self-propulsion mechanism and the geometry of the channel compartments. Our analysis thus suggests how to best control the diffusion of active Brownian motion in confined geometries.
Colloids that interact via a short-range attraction serve as the primary building blocks for a broad range of self-assembled materials. However, one of the well-known drawbacks to this strategy is that these building blocks rapidly and readily condense into a metastable colloidal gel. Using computer simulations, we illustrate how the addition of a small fraction of purely repulsive self-propelled colloids, a technique referred to as active doping, can prevent the formation of this metastable gel state and drive the system toward its thermodynamically favored crystalline target structure. The simplicity and robust nature of this strategy offers a systematic and generic pathway to improving the self-assembly of a large number of complex colloidal structures. We discuss in detail the process by which this feat is accomplished and provide quantitative metrics for exploiting it to modulate self-assembly. We provide evidence for the generic nature of this approach by demonstrating that it remains robust under a number of different anisotropic short-ranged pair interactions in both two and three dimensions. In addition, we report on a novel microphase in mixtures of passive and active colloids. For a broad range of self-propelling velocities, it is possible to stabilize a suspension of fairly monodisperse finite-size crystallites. Surprisingly, this microphase is also insensitive to the underlying pair interaction between building blocks. The active stabilization of these moderately-sized monodisperse clusters is quite remarkable and should be of great utility in the design of hierarchical self-assembly strategies. This work further bolsters the notion that active forces can play a pivotal role in directing colloidal self-assembly.
We numerically study the escape kinetics of a self-propelled Janus particle, carrying a cargo, from a meta-stable state. We assume that the cargo is attached to the Janus particle by a flexible harmonic spring. We take into account the effect of velocity field, created in the fluid due to movements of dimers components, by considering space-dependent diffusion tensor (Oseen tensor). Our simulation results show that the synchronization between barrier crossing events and rotational relaxation process can enhance escape rate to a large extent. Also, the load carrying capability of a Janus particle is largely controlled by its rotational dynamics and self-propulsion velocity. Moreover, the hydrodynamic interaction, conspicuously, enhances the escape rate of the Janus-cargo dimer. The most of the important features in escape kinetics have been justified based on the analytic arguments.
194 - A.P. Zakharov , L.M. Pismen 2017
We describe reshaping of active textiles actuated by bending of Janus fibres comprising both active and passive components. A great variety of shapes, determined by minimising the overall energy of the fabric, can be produced by varying bending directions determined by the orientation of Janus fibres. Under certain conditions, alternative equilibrium states, one absolutely stable and the other metastable coexist, and their relative energy may flip its sign as system parameters, such as the extension upon actuation, change. A snap-through reshaping in a specially structured textile reproduces the Venus flytrap effect.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا