Do you want to publish a course? Click here

Gate-Induced Interfacial Superconductivity in 1T-SnSe2

119   0   0.0 ( 0 )
 Added by Shijun Liang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe2, a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature Tc around 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on 1) a 2D Tinkham description of the angle-dependent upper critical field, 2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.



rate research

Read More

The weak van der Waals interlayer interactions in the transition metal dichalcogenide (TMD) materials have created a rich platform to study their exotic electronic properties through chemical doping or physical gating techniques. We reported bulk superconductivity up to 7.6 K through careful manipulation of the charge carrier density and interlayer spacing d in the chemically intercalated two dimensional 1T-SnSe2 phase. We found, for the first time in the two dimensional SnSe2, that polar organic molecules cointercalated with the alkali metal Li into the basal layers, thus significantly enhancing the superconducting Tc. We observed that the Tc scales with the basal spacing distance, meanwhile being almost independent of x in Lix(THF)ySnSe2 system. Our results offers a new general chemical route to study the rich electron correlations and the interplay of charge density wave and unconventional superconductivity in the two dimensional material.
336 - L. J. Li , W. J. Lu , X. D. Zhu 2011
We report the interplay between charge-density-wave (CDW) and superconductivity of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ ($0leq x leq 0.05$) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/Mott-gap as shown by the density functional theory (DFT) calculations. The superconducting state develops at low temperatures within the CDW state for the samples with the moderate doping levels. The superconductivity strongly depends on $x$ within a narrow range, and the maximum superconducting transition temperature is 2.8 K as $x=0.02$. We propose that the induced superconductivity and CDW phases are separated in real space. For high doping level ($x>0.04$), the Anderson localization (AL) state appears, resulting in a large increase of resistivity. We present a complete electronic phase diagram of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ system that shows a dome-like $T_{c}(x)$.
119 - C. Shang , Y. Q. Fang , Q. Zhang 2018
Transition-metal dichalcogenides open novel opportunities for the exploration of exciting new physics and devices. As a representative system, 2H-MoS$_2$ has been extensively investigated owing to its unique band structure with a large band gap, degenerate valleys and non-zero Berry curvature. However, experimental studies of metastable 1T polytypes have been a challenge for a long time, and electronic properties are obscure due to the inaccessibility of single phase without the coexistence of 1T, 1T and 1T lattice structures, which hinder the broad applications of MoS$_2$ in future nanodevices and optoelectronic devices. Using ${K_x(H_2O)_yMoS_2}$ as the precursor, we have successfully obtained high-quality layered crystals of the metastable 1T-MoS$_2$ with $sqrt{3}atimessqrt{3}a$ superstructure and metastable 1T-MoS$_2$ with a$times$2a superstructure, as evidenced by structural characterizations through scanning tunneling microscopy, Raman spectroscopy and X-ray diffraction. It is found that the metastable 1T-MoS$_2$ is a superconductor with onset transition temperature (${T_c}$) of 4.2 K, while the metastable 1 T-MoS$_2$ shows either superconductivity with Tc of 5.3 K or insulating behavior, which strongly depends on the synthesis procedure. Both of the metastable polytypes of MoS$_2$ crystals can be transformed to the stable 2H phase with mild annealing at about 70 $^{circ}$C in He atmosphere. These findings provide pivotal information on the atomic configurations and physical properties of 1T polytypes of MoS$_2$.
508 - Y. Cui , Z. Hu , J. S. Zhang 2019
We report protonation in several compounds by an ionic-liquid-gating method, with optimized gating conditions. This leads to single superconducting phases for several compounds. Non-volatility of protons allow post-gating magnetization and transport measurements. The superconducting transition temperature $T_C$ is enhanced to 43.5~K for FeSe$_{0.93}$S$_{0.07}$, and 41~K for FeSe after protonation. Superconductivity with $T_c$$approx$15~K for ZrNCl, $approx$7.2~K for 1$T$-TaS$_2$, and $approx$3.8~K for Bi$_2$Se$_3$ are induced after protonation. Electric transport in protonated FeSe$_{0.93}$S$_{0.07}$ confirms high-temperature superconductivity. Our $^{1}$H NMR measurements on protonated FeSe$_{1-x}$S$_{x}$ reveal enhanced spin-lattice relaxation rate $1/^{1}T_1$ with increasing $x$, which is consistent with LDA calculations that H$^{+}$ are located in the interstitial sites close to the anions.
173 - Wenhao Liu , Sheng Li , hanlin Wu 2021
Two-dimensional transition metal dichalcogenide PdTe$_2$ recently attracts much attention due to its phase coexistence of type-II Dirac semimetal and type-I superconductivity. Here we report a 67 % enhancement of superconducting transition temperature in the 1T-PdSeTe in comparison to that of PdTe2 through partial substitution of Te atoms by Se. The superconductivity has been unambiguously confirmed by the magnetization, resistivity and specific heat measurements. 1T-PdSeTe shows type-II superconductivity with large anisotropy and non-bulk superconductivity nature with volume fraction ~ 20 % estimated from magnetic and heat capacity measurements. 1T-PdSeTe expands the family of superconducting transition metal dichalcogenides and thus provides additional insights for understanding superconductivity and topological physics in the 1T-PdTe$_2$ system
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا