Two-dimensional transition metal dichalcogenide PdTe$_2$ recently attracts much attention due to its phase coexistence of type-II Dirac semimetal and type-I superconductivity. Here we report a 67 % enhancement of superconducting transition temperature in the 1T-PdSeTe in comparison to that of PdTe2 through partial substitution of Te atoms by Se. The superconductivity has been unambiguously confirmed by the magnetization, resistivity and specific heat measurements. 1T-PdSeTe shows type-II superconductivity with large anisotropy and non-bulk superconductivity nature with volume fraction ~ 20 % estimated from magnetic and heat capacity measurements. 1T-PdSeTe expands the family of superconducting transition metal dichalcogenides and thus provides additional insights for understanding superconductivity and topological physics in the 1T-PdTe$_2$ system
Transition-metal dichalcogenides open novel opportunities for the exploration of exciting new physics and devices. As a representative system, 2H-MoS$_2$ has been extensively investigated owing to its unique band structure with a large band gap, degenerate valleys and non-zero Berry curvature. However, experimental studies of metastable 1T polytypes have been a challenge for a long time, and electronic properties are obscure due to the inaccessibility of single phase without the coexistence of 1T, 1T and 1T lattice structures, which hinder the broad applications of MoS$_2$ in future nanodevices and optoelectronic devices. Using ${K_x(H_2O)_yMoS_2}$ as the precursor, we have successfully obtained high-quality layered crystals of the metastable 1T-MoS$_2$ with $sqrt{3}atimessqrt{3}a$ superstructure and metastable 1T-MoS$_2$ with a$times$2a superstructure, as evidenced by structural characterizations through scanning tunneling microscopy, Raman spectroscopy and X-ray diffraction. It is found that the metastable 1T-MoS$_2$ is a superconductor with onset transition temperature (${T_c}$) of 4.2 K, while the metastable 1 T-MoS$_2$ shows either superconductivity with Tc of 5.3 K or insulating behavior, which strongly depends on the synthesis procedure. Both of the metastable polytypes of MoS$_2$ crystals can be transformed to the stable 2H phase with mild annealing at about 70 $^{circ}$C in He atmosphere. These findings provide pivotal information on the atomic configurations and physical properties of 1T polytypes of MoS$_2$.
We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe$_2$ by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe$_2$ with its sister compound PtSe$_2$, we demonstrate how enhanced inter-layer hopping in the Te-based material drives a band inversion within the anti-bonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarised topological surface states which form rich multi-valley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.
Unconventional superconductivity is characterized by the spontaneous symmetry breaking of the macroscopic superconducting wavefunction in addition to the gauge symmetry breaking, such as rotational-symmetry breaking with respect to the underlying crystal-lattice symmetry. Particularly, superconductivity with spontaneous rotational-symmetry breaking in the wavefunction amplitude and thus in bulk properties, not yet reported previously, is intriguing and can be termed nematic superconductivity in analogy to nematic liquid-crystal phases. Here, based on specific-heat measurements of the single-crystalline Cu$_x$Bi$_2$Se$_3$ under accurate magnetic-field-direction control, we report thermodynamic evidence for nematic superconductivity, namely, clear two-fold-symmetric behavior in a trigonal lattice. The results indicate realization of an odd-parity nematic state, feasible only by macroscopic quantum condensates and distinct from nematic states in liquid crystals. The results also confirm topologically non-trivial superconductivity in Cu$_x$Bi$_2$Se$_3$.
The transition metal dichalcogenide PdTe$_2$ was recently shown to be a unique system where a type II Dirac semimetallic phase and a superconducting phase co-exist. This observation has led to wide speculation on the possibility of the emergence of an unconventional topological superconducting phase in PdTe$_2$. Here, through direct measurement of the superconducting energy gap by scanning tunneling spectroscopy (STS), and temperature and magnetic field evolution of the same, we show that the superconducting phase in PdTe$_2$ is conventional in nature. The superconducting energy gap is measured to be 326 $mu$eV at 0.38 K and it follows a temperature dependence that is well described within the framework of Bardeen-Cooper-Schriefers (BCS) theory of conventional superconductivity. This is surprising because our quantum oscillation measurements confirm that at least one of the bands participating in transport has topologically non-trivial character.
Nematic states are characterized by rotational symmetry breaking without translational ordering. Recently, nematic superconductivity, in which the superconducting gap spontaneously lifts the rotational symmetry of the lattice, has been discovered. However the pairing mechanism and the mechanism determining the nematic orientation remain unresolved. A first step is to demonstrate control of the nematicity, through application of an external symmetry-breaking field, to determine the sign and strength of coupling to the lattice. Here, we report for the first time control of the nematic orientation of the superconductivity of Sr$_x$Bi$_2$Se$_3$, through externally-applied uniaxial stress. The suppression of subdomains indicates that it is the $Delta_{4y}$ state that is most favoured under compression along the basal Bi-Bi bonds. These results provide an inevitable step towards understanding the microscopic origin of the unique topological nematic superconductivity.