Do you want to publish a course? Click here

Tattoo-Paper Transfer as a Versatile Platform for All-Printed Organic Edible Electronics

86   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The use of natural or bioinspired materials to develop edible electronic devices is a potentially disruptive technology that can boost point-of-care testing. The technology exploits devices which can be safely ingested, along with pills or even food, and operated from within the gastrointestinal tract. Ingestible electronics could potentially target a significant number of biomedical applications, both as therapeutic and diagnostic tool, and this technology may also impact the food industry, by providing ingestible or food-compatible electronic tags that can smart track goods and monitor their quality along the distribution chain. We hereby propose temporary tattoo-paper as a simple and versatile platform for the integration of electronics onto food and pharmaceutical capsules. In particular, we demonstrate the fabrication of all-printed Organic Field-Effect Transistors (OFETs) on untreated commercial tattoo-paper, and their subsequent transfer and operation on edible substrates with a complex non-planar geometry.



rate research

Read More

Organic printed electronics has proven its potential as an essential enabler for applications related to healthcare, entertainment, energy and distributed intelligent objects. The possibility of exploiting solution-based and direct-writing production schemes further boosts the benefits offered by such technology, facilitating the implementation of cheap, conformable, bio-compatible electronic applications. The result shown in this work challenges the widespread assumption that such class of electronic devices is relegated to low-frequency operation, owing to the limited charge mobility of the materials and to the low spatial resolution achievable with conventional printing techniques. Here, it is shown that solution-processed and direct-written organic field-effect transistors can be carefully designed and fabricated so to achieve a maximum transition frequency of 160 MHz, unlocking an operational range that was not available before for organics. Such range was believed to be only accessible with more performing classes of semiconductor materials and/or more expensive fabrication schemes. The present achievement opens a route for cost- and energy-efficient manufacturability of flexible and conformable electronics with wireless-communication capabilities.
Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multi-technique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed.
Despite many advances towards improving the stability of organic photovoltaic devices, environmental degradation under ambient conditions remains a challenging obstacle for future application. Particularly conventional systems employing fullerene derivatives are prone to oxidise under illumination, limiting their applicability. Herein, we report on the environmental stability of the small molecule donor DRCN5T together with the fullerene acceptor PC70BM. We find that this system exhibits exceptional device stability, mainly due to almost constant short-circuit current. By employing ultrafast femtosecond transient absorption spectroscopy we attribute this remarkable stability to two separate mechanisms: 1) DRCN5T exhibits high intrinsic resistance towards external factors, showing no signs of deterioration. 2) The highly sensitive PC70BM is stabilised against degradation by the presence of DRCN5T through ultrafast long-range energy transfer to the donor, rapidly quenching the fullerene excited states which are otherwise precursors for chemical oxidation. We propose that this photoprotective mechanism be utilised to improve the device stability of other systems, including non-fullerene acceptors and ternary blends.
85 - Lu Yin 2020
The rise of flexible electronics calls for cost-effective and scalable batteries with good mechanical and electrochemical performance. In this work, we developed printable, polymer-based AgO-Zn batteries that feature flexibility, rechargeability, high areal capacity, and low impedance. Using elastomeric substrate and binders, the current collectors, electrodes, and separators can be easily screen-printed layer-by-layer and vacuum-sealed in a stacked configuration. The batteries are customizable in sizes and capacities, with the highest obtained areal capacity of 54 mAh/cm2 for primary applications. Advanced micro-CT and EIS were used to characterize the battery, whose mechanical stability was tested with repeated twisting and bending. The batteries were used to power a flexible E-ink display system that requires a high-current drain and exhibited superior performance than commercial coin-cell batteries. The developed battery presents a practical solution for powering a wide range of electronics and holds major implications for the future development of practical and high-performance flexible batteries.
A well-defined insulating layer is of primary importance in the fabrication of passive (e.g. capacitors) and active (e.g. transistors) components in integrated circuits. One of the most widely known 2-Dimensional (2D) dielectric materials is hexagonal boron nitride (hBN). Solution-based techniques are cost-effective and allow simple methods to be used for device fabrication. In particular, inkjet printing is a low-cost, non-contact approach, which also allows for device design flexibility, produces no material wastage and offers compatibility with almost any surface of interest, including flexible substrates. In this work we use water-based and biocompatible graphene and hBN inks to fabricate all-2D material and inkjet-printed capacitors. We demonstrate an areal capacitance of 2.0 pm 0.3 nF cm^(-2) for a dielectric thickness of sim 3 mu m and negligible leakage currents, averaged across more than 100 devices. This gives rise to a derived dielectric constant of 6.1 pm 1.7. The inkjet printed hBN dielectric has a breakdown field of 1.9 pm 0.3 MV cm^(-1). Fully printed capacitors with sub-/mu m hBN layer thicknesses have also been demonstrated. The capacitors are then exploited in two fully printed demonstrators: a resistor-capacitor (RC) low-pass filter and a graphene-based field effect transistor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا