No Arabic abstract
We define topological time crystals, a dynamical phase of periodically driven quantum many-body systems capturing the coexistence of topological order with the spontaneous breaking of discrete time-translation symmetry. We show that many-body localization can stabilize this phase against generic perturbations and establish some of its key features and signatures. We link topological and ordinary time crystals through three complementary perspectives: higher-form symmetries, quantum error-correcting codes, and a holographic correspondence. We also propose an experimental realization of a surface-code-based topological time crystal for the Google Sycamore processor.
The Letter by N. Y. Yao et. al. [1,2] presents three models for realizing a many-body localized discrete time-crystal (MBL DTC): a short-ranged model [1], its revised version [2], as well as a long-range model of a trapped ion experiment [1,3]. We show that none of these realize an MBL DTC for the parameter ranges quoted in Refs. [1,2]. The central phase diagrams in [1] therefore cannot be reproduced. The models show rapid decay of oscillations from generic initial states, in sharp contrast to the robust period doubling dynamics characteristic of an MBL DTC. Long-lived oscillations from special initial states (such as polarized states) can be understood from the familiar low-temperature physics of a static transverse field Ising model, rather than the nonequilibrium physics of an eigenstate-ordered MBL DTC. Our results on the long-range model also demonstrate, by extension, the absence of an MBL DTC in the trapped ion experiment of Ref. [3].
Probing the out-of-equilibrium dynamics of quantum matter has gained renewed interest owing to immense experimental progress in artifcial quantum systems. Dynamical quantum measures such as the growth of entanglement entropy (EE) and out-of-time ordered correlators (OTOCs) have been shown, theoretically, to provide great insight by exposing subtle quantum features invisible to traditional measures such as mass transport. However, measuring them in experiments requires either identical copies of the system, an ancilla qubit coupled to the whole system, or many measurements on a single copy, thereby making scalability extremely complex and hence, severely limiting their potential. Here, we introduce an alternate quantity $-$ the out-of-time-ordered measurement (OTOM) $-$ which involves measuring a single observable on a single copy of the system, while retaining the distinctive features of the OTOCs. We show, theoretically, that OTOMs are closely related to OTOCs in a doubled system with the same quantum statistical properties as the original system. Using exact diagonalization, we numerically simulate classical mass transport, as well as quantum dynamics through computations of the OTOC, the OTOM, and the EE in quantum spin chain models in various interesting regimes (including chaotic and many-body localized systems). Our results demonstrate that an OTOM can successfully reveal subtle aspects of quantum dynamics hidden to classical measures, and crucially, provide experimental access to them.
A discrete time crystal is a remarkable non-equilibrium phase of matter characterized by persistent sub-harmonic response to a periodic drive. Motivated by the question of whether such time-crystalline order can persist when the drive becomes aperiodic, we investigate the dynamics of a Lipkin-Meshkov-Glick model under quasiperiodic kicking. Intriguingly, this infinite-range-interacting spin chain can exhibit long-lived periodic oscillations when the kicking amplitudes are drawn from the Thue-Morse sequence (TMS). We dub this phase a ``self-ordered time crystal (SOTC), and demonstrate that our model hosts at least two qualitatively distinct prethermal SOTC phases. These SOTCs are robust to various perturbations, and they originate from the interplay of long-range interactions and the recursive structure of the TMS. Our results suggest that quasiperiodic driving protocols can provide a promising route for realizing novel non-equilibrium phases of matter in long-range interacting systems.
The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measure a topological entanglement entropy near the expected value of $ln2$, and simulate anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigate key aspects of the surface code, including logical state injection and the decay of the non-local order parameter. Our results demonstrate the potential for quantum processors to provide key insights into topological quantum matter and quantum error correction.
We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature 543, 221-225 (2017)]. They demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.