Do you want to publish a course? Click here

Lifted graphene nanoribbons on gold: from smooth sliding to multiple stick-slip regimes

86   0   0.0 ( 0 )
 Added by Lorenzo Gigli
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene nanoribbons (GNRs) physisorbed on a Au(111) surface can be picked up, lifted at one end, and made slide by means of the tip of an atomic-force microscope. The dynamical transition from smooth sliding to multiple stick-slip regimes, the pushing/pulling force asymmetry, the presence of pinning, and its origin are real frictional processes in a nutshell, in need of a theoretical description. To this purpose, we conduct classical simulations of frictional manipulations for GNRs up to 30 nm in length, one end of which is pushed or pulled horizontally while held at different heights above the Au surface. These simulations allow us to clarify theoretically the emergence of stick-slip originating from the short 1D edges rather than the 2D bulk, the role of adhesion, of lifting, and of graphene bending elasticity in determining the GNR sliding friction. The understanding obtained in this simple context is of additional value for more general cases.

rate research

Read More

We calculate the friction of fully mobile graphene flakes sliding on graphite. For incommensurately stacked flakes, we find a sudden and reversible increase in friction with load, in agreement with experimental observations. The transition from smooth sliding to stick-slip and the corresponding increase in friction is neither due to rotations to commensurate contact nor to dislocations but to a pinning caused by vertical distortions of edge atoms also when they are saturated by Hydrogen. This behavior should apply to all layered materials with strong in-plane bonding.
Graphene is a very attractive material for broadband photodetection in hyperspectral imaging and sensing systems. However, its potential use has been hindered by tradeoffs between the responsivity, bandwidth, and operation speed of existing graphene photodetectors. Here, we present engineered photoconductive nanostructures based on gold-patched graphene nanoribbons, which enable simultaneous broadband and ultrafast photodetection with high responsivity. These nanostructures merge the advantages of broadband optical absorption, ultrafast photocarrier transport, and carrier multiplication in graphene nanoribbons with the ultrafast transport of photocarriers to the gold patches before recombination. Through this approach, high-responsivity operation is achieved without the use of bandwidth- and speed-limiting quantum dots, defect states, or tunneling barriers. We demonstrate high-responsivity photodetection from the visible to the infrared regime (0.6 A/W at 0.8 {mu}m and 11.5 A/W at 20 {mu}m) with operation speeds exceeding 50 GHz. Our results demonstrate an improvement of the response times by more than seven orders of magnitude and an increase in bandwidths of one order of magnitude compared to those of higher-responsivity graphene photodetectors based on quantum dots and tunneling barriers.
A theoretical study of the magnetoelectronic properties of zigzag and armchair bilayer graphene nanoribbons (BGNs) is presented. Using the recursive Greens function method, we study the band structure of BGNs in uniform perpendicular magnetic fields and discuss the zero-temperature conductance for the corresponding clean systems. The conductance quantized as 2(n+1)G_ for the zigzag edges and nG_0 for the armchair edges with G_{0}=2e^2/h being the conductance unit and $n$ an integer. Special attention is paid to the effects of edge disorder. As in the case of monolayer graphene nanoribbons (GNR), a small degree of edge disorder is already sufficient to induce a transport gap around the neutrality point. We further perform comparative studies of the transport gap E_g and the localization length in bilayer and monolayer nanoribbons. While for the GNRs E_{g}^{GNR}is proportional to 1/W, the corresponding transport gap E_{g}^{BGN} for the bilayer ribbons shows a more rapid decrease as the ribbon width W is increased. We also demonstrate that the evolution of localization lengths with the Fermi energy shows two distinct regimes. Inside the transport gap, xi is essentially independent on energy and the states in the BGNs are significantly less localized than those in the corresponding GNRs. Outside the transport gap xi grows rapidly as the Fermi energy increases and becomes very similar for BGNs and GNRs.
In this work we study thermoelectric properties of graphene nanoribbons with side-attached organic molecules. By adopting a single-band tight binding Hamiltonian and the Greens function formalism, we calculated the transmission and Seebeck coefficients for different hybrid systems. The corresponding thermopower profiles exhibit a series of sharp peaks at the eigenenergies of the isolated molecule. We study the effects of the temperature on the thermoelectric response, and we consider random configurations of molecule distributions, in different disorder regimes. The main characteristics of the thermopower are not destroyed under temperature and disorder, indicating the robustness of the system as a proposed molecular thermo-sensor device.
We discuss the stick-slip motion of an elastic block sliding along a rigid substrate. We argue that for a given external shear stress this system shows a discontinuous nonequilibrium transition from a uniform stick state to uniform sliding at some critical stress which is nothing but the Griffith threshold for crack propagation. An inhomogeneous mode of sliding occurs, when the driving velocity is prescribed instead of the external stress. A transition to homogeneous sliding occurs at a critical velocity, which is related to the critical stress. We solve the elastic problem for a steady-state motion of a periodic stick-slip pattern and derive equations of motion for the tip and resticking end of the slip pulses. In the slip regions we use the linear viscous friction law and do not assume any intrinsic instabilities even at small sliding velocities. We find that, as in many other pattern forming system, the steady-state analysis itself does not select uniquely all the internal parameters of the pattern, especially the primary wavelength. Using some plausible analogy to first order phase transitions we discuss a ``soft selection mechanism. This allows to estimate internal parameters such as crack velocities, primary wavelength and relative fraction of the slip phase as function of the driving velocity. The relevance of our results to recent experiments is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا