Do you want to publish a course? Click here

A strictly commutative model for the cochain algebra of a space

173   0   0.0 ( 0 )
 Added by Steffen Sagave
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The commutative differential graded algebra $A_{mathrm{PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{mathcal{I}}(X)$ of $A_{mathrm{PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $mathcal{I}$ to model $E_{infty}$ differential graded algebras by strictly commutative objects, called commutative $mathcal{I}$-dgas. We define a functor $A^{mathcal{I}}$ from simplicial sets to commutative $mathcal{I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{infty}$ dga of cochains. The functor $A^{mathcal{I}}$ shares many properties of $A_{mathrm{PL}}$, and can be viewed as a generalization of $A_{mathrm{PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{mathcal{I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type.



rate research

Read More

In 1947, N.E. Steenrod defined the Steenrod Squares, which are mod 2 cohomology operations, using explicit cochain formulae for cup-i products of cocycles. He later recast the construction in more general homological terms, using group homology and acyclic model methods, rather than explicit cochain formulae, to define mod p operations for all primes p. Steenrods student J. Adem applied the homological point of view to prove fundamental relations, known as the Adem relations, in the algebra of cohomology operations generated by the Steenrod operations. In this paper we give a proof of the mod 2 Adem relations at the cochain level. Specifically, given a mod 2 cocycle, we produce explicit cochain formulae whose coboundaries are the Adem relations among compositions of Steenrod Squares applied to the cocycle, using Steenrods original cochain definition of the Square operations.
For a multiplicative cohomology theory E, complex orientations are in bijective correspondence with multiplicative natural transformations to E from complex bordism cohomology MU. If E is represented by a spectrum with a highly structured multiplication, we give an iterative process for lifting an orientation MU -> E to a map respecting this extra structure, based on work of Arone-Lesh. The space of strictly commutative orientations is the limit of an inverse tower of spaces parametrizing partial lifts; stage 1 corresponds to ordinary complex orientations, and lifting from stage (m-1) to stage m is governed by the existence of a orientation for a family of E-modules over a fixed base space F_m. When E is p-local, we can say more. We find that this tower only changes when m is a power of p, and if E is E(n)-local the tower is constant after stage p^n. Moreover, if the coefficient ring E^* is p-torsion free, the ability to lift from stage 1 to stage p is equivalent to a condition on the associated formal group law that was shown necessary by Ando.
We show that the homotopy category of commutative algebra spectra over the Eilenberg-Mac Lane spectrum of the integers is equivalent to the homotopy category of E-infinity-monoids in unbounded chain complexes. We do this by establishing a chain of Quillen equivalences between the corresponding model categories. We also provide a Quillen equivalence to commutative monoids in the category of functors from the category of finite sets and injections to unbounded chain complexes.
Steenrod defined in 1947 the Steenrod squares on the mod 2 cohomology of spaces using explicit cochain formulae for the cup-$i$ products; a family of coherent homotopies derived from the broken symmetry of Alexander-Whitneys chain approximation to the diagonal. He later defined his homonymous operations for all primes using the homology of symmetric groups. This approach enhanced the conceptual understanding of the operations and allowed for many advances, but lacked the concreteness of their definition at the even prime. In recent years, thanks to the development of new applications of cohomology, having definitions of Steenrod operations that can be effectively computed in specific examples has become a key issue. This article provides such definitions at all primes using the operadic viewpoint of May, and defines multioperations that generalize the cup-$i$ products of Steenrod on the simplicial and cubical cochains of spaces.
A non-commutative, planar, Hopf algebra of rooted trees was proposed in L. Foissy, Bull. Sci. Math. 126 (2002) 193-239. In this paper we propose such a non-commutative Hopf algebra for graphs. In order to define a non-commutative product we use a quantum field theoretical (QFT) idea, namely the one of introducing discrete scales on each edge of the graph (which, within the QFT framework, corresponds to energy scales of the associated propagators).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا