Do you want to publish a course? Click here

An algebraic model for commutative HZ-algebras

178   0   0.0 ( 0 )
 Added by Birgit Richter
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We show that the homotopy category of commutative algebra spectra over the Eilenberg-Mac Lane spectrum of the integers is equivalent to the homotopy category of E-infinity-monoids in unbounded chain complexes. We do this by establishing a chain of Quillen equivalences between the corresponding model categories. We also provide a Quillen equivalence to commutative monoids in the category of functors from the category of finite sets and injections to unbounded chain complexes.



rate research

Read More

The theory of p-local compact groups, developed in an earlier paper by the same authors, is designed to give a unified framework in which to study the p-local homotopy theory of classifying spaces of compact Lie groups and p-compact groups, as well as some other families of a similar nature. It also includes, and in many aspects generalizes, the earlier theory of p-local finite groups. In this paper we show that the theory extends to include classifying spaces of finite loop spaces. Our main theorem is in fact more general and states that in a fibration whose base spaces if the classifying space of a finite group, and whose fibre is the classifying space of a p-local compact group, the total space is, up to p-completion the classifying space of a p-local compact group.
146 - Brooke Shipley 2009
This correction article is actually unnecessary. The proof of Theorem 1.2, concerning commutative HQ-algebra spectra and commutative differential graded algebras, in the authors paper [American Journal of Mathematics vol. 129 (2007) 351-379 (arxiv:math/0209215v4)] is correct as originally stated. Neil Strickland carefully proved that D is symmetric monoidal; so Proposition 4.7 and hence also Theorem 1.2 hold as stated. Stricklands proof will appear in joint work with Stefan Schwede; see related work in Stricklands [arxiv:0810.1747]. Note here D is defined as a colimit of chain complexes; in contrast, non-symmetric monoidal functors analogous to D are defined as homotopy colimits of spaces in previous work of the author.
An algebraic classification of complex $5$-dimensional nilpotent commutative $mathfrak{CD}$-algebras is given. This classification is based on an algebraic classification of complex $5$-dimensional nilpotent Jordan algebras.
The commutative differential graded algebra $A_{mathrm{PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{mathcal{I}}(X)$ of $A_{mathrm{PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $mathcal{I}$ to model $E_{infty}$ differential graded algebras by strictly commutative objects, called commutative $mathcal{I}$-dgas. We define a functor $A^{mathcal{I}}$ from simplicial sets to commutative $mathcal{I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{infty}$ dga of cochains. The functor $A^{mathcal{I}}$ shares many properties of $A_{mathrm{PL}}$, and can be viewed as a generalization of $A_{mathrm{PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{mathcal{I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type.
The project of Greenlees et al. on understanding rational G-spectra in terms of algebraic categories has had many successes, classifying rational G-spectra for finite groups, SO(2), O(2), SO(3), free and cofree G-spectra as well as rational toral G-spectra for arbitrary compact Lie groups. This paper provides an introduction to the subject in two parts. The first discusses rational G-Mackey functors, the action of the Burnside ring and change of group functors. It gives a complete proof of the well-known classification of rational Mackey functors for finite G. The second part discusses the methods and tools from equivariant stable homotopy theory needed to obtain algebraic models for rational G-spectra. It gives a summary of the key steps in the classification of rational G-spectrain terms of a symmetric monoidal algebraic category. Having these two parts in the same place allows one to clearly see the analogy between the algebraic and topological classifications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا