Do you want to publish a course? Click here

Cochain level May-Steenrod operations

89   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Steenrod defined in 1947 the Steenrod squares on the mod 2 cohomology of spaces using explicit cochain formulae for the cup-$i$ products; a family of coherent homotopies derived from the broken symmetry of Alexander-Whitneys chain approximation to the diagonal. He later defined his homonymous operations for all primes using the homology of symmetric groups. This approach enhanced the conceptual understanding of the operations and allowed for many advances, but lacked the concreteness of their definition at the even prime. In recent years, thanks to the development of new applications of cohomology, having definitions of Steenrod operations that can be effectively computed in specific examples has become a key issue. This article provides such definitions at all primes using the operadic viewpoint of May, and defines multioperations that generalize the cup-$i$ products of Steenrod on the simplicial and cubical cochains of spaces.



rate research

Read More

In 1947, N.E. Steenrod defined the Steenrod Squares, which are mod 2 cohomology operations, using explicit cochain formulae for cup-i products of cocycles. He later recast the construction in more general homological terms, using group homology and acyclic model methods, rather than explicit cochain formulae, to define mod p operations for all primes p. Steenrods student J. Adem applied the homological point of view to prove fundamental relations, known as the Adem relations, in the algebra of cohomology operations generated by the Steenrod operations. In this paper we give a proof of the mod 2 Adem relations at the cochain level. Specifically, given a mod 2 cocycle, we produce explicit cochain formulae whose coboundaries are the Adem relations among compositions of Steenrod Squares applied to the cocycle, using Steenrods original cochain definition of the Square operations.
159 - Sergey A. Melikhov 2009
Steenrod homotopy theory is a framework for doing algebraic topology on general spaces in terms of algebraic topology of polyhedra; from another viewpoint, it studies the topology of the lim^1 functor (for inverse sequences of groups). This paper is primarily concerned with the case of compacta, in which Steenrod homotopy coincides with strong shape. We attempt to simplify foundations of the theory and to clarify and improve some of its major results. Using geometric tools such as Milnors telescope compactification, comanifolds (=mock bundles) and the Pontryagin-Thom Construction, we obtain new simple proofs of results by Barratt-Milnor; Cathey; Dydak-Segal; Eda-Kawamura; Edwards-Geoghegan; Fox; Geoghegan-Krasinkiewicz; Jussila; Krasinkiewicz-Minc; Mardesic; Mittag-Leffler/Bourbaki; and of three unpublished results by Shchepin. An error in Lisitsas proof of the Hurewicz theorem in Steenrod homotopy is corrected. It is shown that over compacta, R.H.Foxs overlayings are same as I.M.James uniform covering maps. Other results include: - A morphism between inverse sequences of countable (possibly non-abelian) groups that induces isomorphisms on inverse and derived limits is invertible in the pro-category. This implies the Whitehead theorem in Steenrod homotopy, thereby answering two questions of A.Koyama. - If X is an LC_{n-1} compactum, n>0, its n-dimensional Steenrod homotopy classes are representable by maps S^nto X, provided that X is simply connected. The assumption of simply-connectedness cannot be dropped by a well-known example of Dydak and Zdravkovska. - A connected compactum is Steenrod connected (=pointed 1-movable) iff every its uniform covering space has countably many uniform connected components.
We compute the $C_p$-equivariant dual Steenrod algebras associated to the constant Mackey functors $underline{mathbb{F}}_p$ and $underline{mathbb{Z}}_{(p)}$, as $underline{mathbb{Z}}_{(p)}$-modules. The $C_p$-spectrum $underline{mathbb{F}}_p otimes underline{mathbb{F}}_p$ is not a direct sum of $RO(C_p)$-graded suspensions of $underline{mathbb{F}}_p$ when $p$ is odd, in contrast with the classical and $C_2$-equivariant dual Steenrod algebras.
The commutative differential graded algebra $A_{mathrm{PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{mathcal{I}}(X)$ of $A_{mathrm{PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $mathcal{I}$ to model $E_{infty}$ differential graded algebras by strictly commutative objects, called commutative $mathcal{I}$-dgas. We define a functor $A^{mathcal{I}}$ from simplicial sets to commutative $mathcal{I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{infty}$ dga of cochains. The functor $A^{mathcal{I}}$ shares many properties of $A_{mathrm{PL}}$, and can be viewed as a generalization of $A_{mathrm{PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{mathcal{I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type.
142 - Daniel C. Isaksen 2020
We study the Mahowald operator $M = langle g_2,h_0^3, - rangle$ in the cohomology of the Steenrod algebra. We show that the operator interacts well with the cohomology of $A(2)$, in both the classical and $mathbb{C}$-motivic contexts. This generalizes previous work of Margolis, Priddy, and Tangora.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا