Do you want to publish a course? Click here

Melting of the Au20 gold cluster : does charge matter?

46   0   0.0 ( 0 )
 Added by Mathias Rapacioli
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the dependence upon charge of the heat capacities of the magic gold cluster Au20 obtained from density functional based tight binding theory within parallel tempering molecular dynamics and the multiple histogram method. The melting temperatures, determined from heat capacity curves, are found to be 1102 K for neutral Au20 and only 866 and 826 K for Au{20} cations and anions respectively. The present work proves that a single charge quantitatively affects the thermal properties of the twentymer even for a global property such as melting.

rate research

Read More

We study the initial stages of homogeneous melting of a hexagonal ice crystal at coexistence and at moderate superheating. Our trajectory-based computer simulation approach provides a comprehensive picture of the events that lead to melting; from the initial accumulation of 5+7 defects, via the formation of L-D and interstitial-vacancy pairs, to the formation of a liquid nucleus. Of the different types of defects that we observe to be involved in melting, a particular kind of 5+7 type defect (type 5) plays a prominent role as it often forms prior to the formation of the initial liquid nucleus and close to the site where the nucleus forms. Hence, like other solids, ice homogeneously melts via the prior accumulation of defects.
64 - Jozsef Garai 2009
New model describing the pressure effect on the melting temperature is proposed by using four assumptions. One, the average wavelength of the phonon vibration at the Debye temperature corresponds to the length of the unit cell. Two, the phonon vibration at the melting temperature is in self-resonance with the lattice vibration of the surface atomic/molecular layer. Three, the phonon wavelength ratio of the Debye and the melting temperature does not be affected by the pressure. Four the pressure reduces the anharmonic part of the vibration. The relevant equations are derived and tested against the experiments of sodium with positive result.
Pressure-melting temperature relationship is proposed and tested against the experiments of metals (Pt and Al), salt (NaCl), and ceramic (MgO) with positive results. The equation contains one open parameter which remains constant for the investigated substances. The constant value of the parameter indicates that the presented equation for the melting curve might be the first one which does not contain any arbitrary constant which is left open to fit to the experiments.
The ionization constant of water Kw is currently determined on the proton conductivity sigma1 which is measured at frequencies lower than 10^7 Hz. Here, we develop the idea that the high frequency conductivity sigma2 (~10^11 Hz), rather than sigma1 represents a net proton dynamics in water, to evaluate the actual concentration c of H3O+ and OH- ions from sigma2. We find c to be not dependent on temperature to conclude that i) water electrodynamics is due to a proton exchange between H3O+ (or OH-) ions and neutral H2O molecules rather than spontaneous ionization of H2O molecules, ii) the common Kw (or pH) reflects the thermoactivation of the H3O+ and OH- ions from the potential of their interaction, iii) the lifetime of a target water molecule does not exceed parts of nanosecond.
We report that gold thermally deposited onto n-layer graphenes interacts differently with these substrates depending on the number layer, indicating the different surface properties of graphenes. This results in thickness-dependent morphologies of gold on n-layer graphenes, which can be used to identify and distinguish graphenes with high throughput and spatial resolution. This technique may play an important role in checking if n-layer graphenes are mixed with different layer numbers of graphene with a smaller size, which cannot be found by Raman spectra. The possible mechanisms for these observations are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا