Do you want to publish a course? Click here

Millimeter-Wave Interference Avoidance via Building-Aware Associations

479   0   0.0 ( 0 )
 Added by Jeemin Kim
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Signal occlusion by building blockages is a double-edged sword for the performance of millimeter-wave (mmW) communication networks. Buildings may dominantly attenuate the useful signals, especially when mmW base stations (BSs) are sparsely deployed compared to the building density. In the opposite BS deployment, buildings can block the undesired interference. To enjoy only the benefit, we propose a building-aware association scheme that adjusts the directional BS association bias of the user equipments (UEs), based on a given building density and the concentration of UE locations around the buildings. The association of each BS can thereby be biased: (i) toward the UEs located against buildings for avoiding interference to other UEs; or (ii) toward the UEs providing their maximum reference signal received powers (RSRPs). The proposed association scheme is optimized to maximize the downlink average data rate derived by stochastic geometry. Its effectiveness is validated by simulation using real building statistics.



rate research

Read More

Aerial base station (ABS) is a promising solution for public safety as it can be deployed in coexistence with cellular networks to form a temporary communication network. However, the interference from the primary cellular network may severely degrade the performance of an ABS network. With this consideration, an adaptive dynamic interference avoidance scheme is proposed in this work for ABSs coexisting with a primary network. In the proposed scheme, the mobile ABSs can reconfigure their locations to mitigate the interference from the primary network, so as to better relay the data from the designated source(s) to destination(s). To this end, the single/multi-commodity maximum flow problems are formulated and the weighted Cheeger constant is adopted as a criterion to improve the maximum flow of the ABS network. In addition, a distributed algorithm is proposed to compute the optimal ABS moving directions. Moreover, the trade-off between the maximum flow and the shortest path trajectories is investigated and an energy-efficient approach is developed as well. Simulation results show that the proposed approach is effective in improving the maximum network flow and the energy-efficient approach can save up to 39% of the energy for the ABSs with marginal degradation in the maximum network flow.
Beam training in dynamic millimeter-wave (mm-wave) networks with mobile devices is highly challenging as devices must scan a large angular domain to maintain alignment of their directional antennas under mobility. Device rotation is particularly challenging, as a handheld device may rotate significantly over a very short period of time, causing it to lose the connection to the Access Point (AP) unless the rotation is accompanied by immediate beam realignment. We study how to maintain the link to a mm-wave AP under rotation and without any input from inertial sensors, exploiting the fact that mm-wave devices will typically be multi-band. We present a model that maps Time-of-Flight measurements to rotation and propose a method to infer the rotation speed of the mobile terminal using only measurements from sub-6 GHz WiFi. We also use the same sub-6 GHz WiFi system to reduce the angle error estimate for link establishment, exploiting the spatial geometry of the deployed APs and a statistical model that maps the user positions spatial distribution to an angle error distribution. We leverage these findings to introduce SLASH, a Statistical Location and rotation-Aware beam SearcH algorithm that adaptively narrows the sector search space and accelerates both link establishment and maintenance between mm-wave devices. We evaluate SLASH with experiments conducted indoors with a sub-6 GHz WiFi Time-of-Flight positioning system and a 60-GHz testbed. SLASH can increase the data rate by more than 41% for link establishment and 67% for link maintenance with respect to prior work.
This paper considers the motion energy minimization problem for a wirelessly connected robot using millimeter-wave (mm-wave) communications. These are assisted by an intelligent reflective surface (IRS) that enhances the coverage at such high frequencies characterized by high blockage sensitivity. The robot is subject to time and uplink communication quality of service (QoS) constraints. This is a fundamental problem in fully automated factories that characterize Industry 4.0, where robots may have to perform tasks with given deadlines while maximizing the battery autonomy and communication efficiency. To account for the mutual dependence between robot position and communication QoS, we propose a joint optimization of robot trajectory and beamforming at the IRS and access point (AP). We present a solution that first exploits mm-wave channel characteristics to decouple beamforming and trajectory optimization. Then, the latter is solved by a successive-convex optimization-based algorithm. The algorithm takes into account the obstacles positions and a radio map to avoid collisions and poorly covered areas. We prove that the algorithm can converge to a solution satisfying the Karush-Kuhn-Tucker (KKT) conditions. The simulation results show a dramatic reduction of the motion energy consumption with respect to methods that aim to find maximum-rate trajectories. Moreover, we show how the IRS and the beamforming optimization improve the motion energy efficiency of the robot.
Ad-hoc Social Network (ASNET), which explores social connectivity between users of mobile devices, is becoming one of the most important forms of todays internet. In this context, maximum bandwidth utilization of intermediate nodes in resource scarce environments is one of the challenging tasks. Traditional Transport Control Protocol (TCP) uses the round trip time mechanism for sharing bandwidth resources between users. However, it does not explore socially-aware properties between nodes and cannot differentiate effectively between various types of packet losses in wireless networks. In this paper, a socially-aware congestion avoidance protocol, namely TIBIAS, which takes advantage of similarity matching social properties among intermediate nodes, is proposed to improve the resource efficiency of ASNETs. TIBIAS performs efficient data transfer over TCP. During the course of bandwidth resource allocation, it gives high priority for maximally matched interest similarity between different TCP connections on ASNET links. TIBIAS does not require any modification at lower layers or on receiver nodes. Experimental results show that TIBIAS performs better as compared against existing protocols, in terms of link utilization, unnecessary reduction of the congestion window, throughput and retransmission ratio.
The use of the unmanned aerial vehicle (UAV) has been foreseen as a promising technology for the next generation communication networks. Since there are no regulations for UAVs deployment yet, most likely they form a network in coexistence with an already existed network. In this work, we consider a transmission mechanism that aims to improve the data rate between a terrestrial base station (BS) and user equipment (UE) through deploying multiple UAVs relaying the desired data flow. Considering the coexistence of this network with other established communication networks, we take into account the effect of interference, which is incurred by the existing nodes. Our primary goal is to optimize the three-dimensional (3D) trajectories and power allocation for the relaying UAVs to maximize the data flow while keeping the interference to existing nodes below a predefined threshold. An alternating-maximization strategy is proposed to solve the joint 3D trajectory design and power allocation for the relaying UAVs. To this end, we handle the information exchange within the network by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Simulation results show that our approach can considerably improve the information flow while the interference threshold constraint is met.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا