Do you want to publish a course? Click here

ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases

53   0   0.0 ( 0 )
 Added by Pierre Stock
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

ConvNets and Imagenet have driven the recent success of deep learning for image classification. However, the marked slowdown in performance improvement combined with the lack of robustness of neural networks to adversarial examples and their tendency to exhibit undesirable biases question the reliability of these methods. This work investigates these questions from the perspective of the end-user by using human subject studies and explanations. The contribution of this study is threefold. We first experimentally demonstrate that the accuracy and robustness of ConvNets measured on Imagenet are vastly underestimated. Next, we show that explanations can mitigate the impact of misclassified adversarial examples from the perspective of the end-user. We finally introduce a novel tool for uncovering the undesirable biases learned by a model. These contributions also show that explanations are a valuable tool both for improving our understanding of ConvNets predictions and for designing more reliable models.

rate research

Read More

Neural network pruning is a popular technique used to reduce the inference costs of modern, potentially overparameterized, networks. Starting from a pre-trained network, the process is as follows: remove redundant parameters, retrain, and repeat while maintaining the same test accuracy. The result is a model that is a fraction of the size of the original with comparable predictive performance (test accuracy). Here, we reassess and evaluate whether the use of test accuracy alone in the terminating condition is sufficient to ensure that the resulting model performs well across a wide spectrum of harder metrics such as generalization to out-of-distribution data and resilience to noise. Across evaluations on varying architectures and data sets, we find that pruned networks effectively approximate the unpruned model, however, the prune ratio at which pruned networks achieve commensurate performance varies significantly across tasks. These results call into question the extent of emph{genuine} overparameterization in deep learning and raise concerns about the practicability of deploying pruned networks, specifically in the context of safety-critical systems, unless they are widely evaluated beyond test accuracy to reliably predict their performance. Our code is available at https://github.com/lucaslie/torchprune.
Knowledge transferability, or transfer learning, has been widely adopted to allow a pre-trained model in the source domain to be effectively adapted to downstream tasks in the target domain. It is thus important to explore and understand the factors affecting knowledge transferability. In this paper, as the first work, we analyze and demonstrate the connections between knowledge transferability and another important phenomenon--adversarial transferability, emph{i.e.}, adversarial examples generated against one model can be transferred to attack other models. Our theoretical studies show that adversarial transferability indicates knowledge transferability and vice versa. Moreover, based on the theoretical insights, we propose two practical adversarial transferability metrics to characterize this process, serving as bidirectional indicators between adversarial and knowledge transferability. We conduct extensive experiments for different scenarios on diverse datasets, showing a positive correlation between adversarial transferability and knowledge transferability. Our findings will shed light on future research about effective knowledge transfer learning and adversarial transferability analyses.
Knowledge distillation is widely used as a means of improving the performance of a relatively simple student model using the predictions from a complex teacher model. Several works have shown that distillation significantly boosts the students overall performance; however, are these gains uniform across all data subgroups? In this paper, we show that distillation can harm performance on certain subgroups, e.g., classes with few associated samples. We trace this behaviour to errors made by the teacher distribution being transferred to and amplified by the student model. To mitigate this problem, we present techniques which soften the teacher influence for subgroups where it is less reliable. Experiments on several image classification benchmarks show that these modifications of distillation maintain boost in overall accuracy, while additionally ensuring improvement in subgroup performance.
109 - Anh Bui , Trung Le , He Zhao 2021
Contrastive learning (CL) has recently emerged as an effective approach to learning representation in a range of downstream tasks. Central to this approach is the selection of positive (similar) and negative (dissimilar) sets to provide the model the opportunity to `contrast between data and class representation in the latent space. In this paper, we investigate CL for improving model robustness using adversarial samples. We first designed and performed a comprehensive study to understand how adversarial vulnerability behaves in the latent space. Based on these empirical evidences, we propose an effective and efficient supervised contrastive learning to achieve model robustness against adversarial attacks. Moreover, we propose a new sample selection strategy that optimizes the positive/negative sets by removing redundancy and improving correlation with the anchor. Experiments conducted on benchmark datasets show that our Adversarial Supervised Contrastive Learning (ASCL) approach outperforms the state-of-the-art defenses by $2.6%$ in terms of the robust accuracy, whilst our ASCL with the proposed selection strategy can further gain $1.4%$ improvement with only $42.8%$ positives and $6.3%$ negatives compared with ASCL without a selection strategy.
As machine learning methods are deployed in real-world settings such as healthcare, legal systems, and social science, it is crucial to recognize how they shape social biases and stereotypes in these sensitive decision-making processes. Among such real-world deployments are large-scale pretrained language models (LMs) that can be potentially dangerous in manifesting undesirable representational biases - harmful biases resulting from stereotyping that propagate negative generalizations involving gender, race, religion, and other social constructs. As a step towards improving the fairness of LMs, we carefully define several sources of representational biases before proposing new benchmarks and metrics to measure them. With these tools, we propose steps towards mitigating social biases during text generation. Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information for high-fidelity text generation, thereby pushing forward the performance-fairness Pareto frontier.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا