Do you want to publish a course? Click here

Load Forecasting Based Distribution System Network Reconfiguration-A Distributed Data-Driven Approach

123   0   0.0 ( 0 )
 Added by Yi Gu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, the proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.



rate research

Read More

97 - Qimin Xu , Bo Yang , Cailian Chen 2017
Due to the limited generation and finite inertia, microgrid suffers from the large frequency and voltage deviation which can lead to system collapse. Thus, reliable load shedding to keep frequency stable is required. Wireless network, benefiting from the high flexibility and low deployment cost, is considered as a promising technology for fine-grained management. In this paper, for balancing the supply-demand and reducing the load-shedding amount, a distributed load shedding solution via wireless network is proposed. Firstly, active power coordination of different priority loads is formulated as an optimisation problem. To solve it, a distributed load shedding algorithm based on subgradient method (DLSS) is developed for gradually shedding loads. Using this method, power compensation can be utilised and has more time to lower the power deficit so as to reduce the load-shedding amount. Secondly, to increase the response rate and enhance the reliability of our method, a multicast metropolis schedule based on TDMA (MMST) is developed. In this protocol, time slots are dedicatedly allocated and a checking and retransmission mechanism is utilised. Finally, the proposed solution is evaluated by NS3-Matlab co-simulator. The numerical results demonstrate the feasibility and effectiveness of our solution.
Encoder-decoder-based recurrent neural network (RNN) has made significant progress in sequence-to-sequence learning tasks such as machine translation and conversational models. Recent works have shown the advantage of this type of network in dealing with various time series forecasting tasks. The present paper focuses on the problem of multi-horizon short-term load forecasting, which plays a key role in the power systems planning and operation. Leveraging the encoder-decoder RNN, we develop an attention model to select the relevant features and similar temporal information adaptively. First, input features are assigned with different weights by a feature selection attention layer, while the updated historical features are encoded by a bi-directional long short-term memory (BiLSTM) layer. Then, a decoder with hierarchical temporal attention enables a similar day selection, which re-evaluates the importance of historical information at each time step. Numerical results tested on the dataset of the global energy forecasting competition 2014 show that our proposed model significantly outperforms some existing forecasting schemes.
Load forecasting plays a critical role in the operation and planning of power systems. By using input features such as historical loads and weather forecasts, system operators and utilities build forecast models to guide decision making in commitment and dispatch. As the forecasting techniques becomes more sophisticated, however, they also become more vulnerable to cybersecurity threats. In this paper, we study the vulnerability of a class of load forecasting algorithms and analyze the potential impact on the power system operations, such as load shedding and increased dispatch costs. Specifically, we propose data injection attack algorithms that require minimal assumptions on the ability of the adversary. The attacker does not need to have knowledge about the load forecasting model or the underlying power system. Surprisingly, our results indicate that standard load forecasting algorithms are quite vulnerable to the designed black-box attacks. By only injecting malicious data in temperature from online weather forecast APIs, an attacker could manipulate load forecasts in arbitrary directions and cause significant and targeted damages to system operations.
This paper presents a spanning tree-based genetic algorithm (GA) for the reconfiguration of electrical distribution systems with the objective of minimizing active power losses. Due to low voltage levels at distribution systems, power losses are high and sensitive to system configuration. Therefore, optimal reconfiguration is an important factor in the operation of distribution systems to minimize active power losses. Smart and automated electric distribution systems are able to reconfigure as a response to changes in load levels to minimize active power losses. The proposed method searches spanning trees of potential configurations and finds the optimal spanning tree using a genetic algorithm in two steps. In the first step, all invalid combinations of branches and tie-lines (i.e., switching combinations that do not provide power to some of loads or violate the radiality and connectivity conditions) generated by initial population of GA are filtered out with the help of spanning-tree search algorithm. In the second step, power flow analyses are performed only for combinations that form spanning trees. The optimal configuration is then determined based on the amount of active power losses (optimal configuration is the one that results in minimum power losses). The proposed method is implemented on several systems including the well-known 33-node and 69-node systems. The results show that the proposed method is accurate and efficient in comparison with existing methods.
We consider sensor transmission power control for state estimation, using a Bayesian inference approach. A sensor node sends its local state estimate to a remote estimator over an unreliable wireless communication channel with random data packet drops. As related to packet dropout rate, transmission power is chosen by the sensor based on the relative importance of the local state estimate. The proposed power controller is proved to preserve Gaussianity of local estimate innovation, which enables us to obtain a closed-form solution of the expected state estimation error covariance. Comparisons with alternative non data-driven controllers demonstrate performance improvement using our approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا