Do you want to publish a course? Click here

Observation of Coulomb gap in the quantum spin Hall candidate single-layer 1T-WTe$_2$

115   0   0.0 ( 0 )
 Added by Shao-Chun Li
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The two-dimensional topological insulators (2DTI) host a full gap in the bulk band, induced by spin-orbit coupling (SOC) effect, together with the topologically protected gapless edge states. However, the SOC-induced gap is usually small, and it is challenging to suppress the bulk conductance and thus to realize the quantum spin Hall (QSH) effect. In this study, we find a novel mechanism to effectively suppress the bulk conductance. By using the quasiparticle interference (QPI) technique with scanning tunneling spectroscopy (STS), we demonstrate that the QSH candidate single-layer 1T-WTe$_2$ has a semi-metal bulk band structure with no full SOC-induced gap. Surprisingly, in this two-dimensional system, we find the electron interactions open a Coulomb gap which is always pinned at the Fermi energy (E$_F$). The opening of the Coulomb gap can efficiently diminish the bulk state at the E$_F$ and is in favor of the observation of the quantized conduction of topological edge states.



rate research

Read More

60 - P. Chen , W.-W. Pai , Y.-H. Chan 2018
Two-dimensional (2D) topological insulators (TIs) are promising platforms for low-dissipation spintronic devices based on the quantum spin Hall (QSH) effect, but experimental realization of such systems with a large band gap suitable for room-temperature applications has proven difficult. Here, we report the successful growth on bilayer graphene of a quasi-freestanding WSe$_2$ single layer with the 1T structure that does not exist in the bulk form of WSe$_2$. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we observed a gap of 129 meV in the 1T layer and an in-gap edge state located near the layer boundary. The systems 2D TI characters are confirmed by first-principles calculations. The observed gap diminishes with doping by Rb adsorption, ultimately leading to an insulator-semimetal transition. The discovery of this large-gap 2D TI with a tunable band gap opens up opportunities for developing advanced nanoscale systems and quantum devices.
The quantum spin Hall (QSH) state was recently demonstrated in monolayers of the transition metal dichalcogenide 1T-WTe$_2$ and is characterized by a band gap in the two-dimensional (2D) interior and helical one-dimensional (1D) edge states. Inducing superconductivity in the helical edge states would result in a 1D topological superconductor, a highly sought-after state of matter. In the present study, we use a novel dry-transfer flip technique to place atomically-thin layers of WTe$_2$ on a van der Waals superconductor, NbSe$_2$. Using scanning tunneling microscopy and spectroscopy (STM/STS), we demonstrate atomically clean surfaces and interfaces and the presence of a proximity-induced superconducting gap in the WTe$_2$ for thicknesses from a monolayer up to 7 crystalline layers. At the edge of the WTe$_2$ monolayer, we show that the superconducting gap coexists with the characteristic spectroscopic signature of the QSH edge state. Taken together, these observations provide conclusive evidence for proximity-induced superconductivity in the QSH edge state in WTe$_2$, a crucial step towards realizing 1D topological superconductivity and Majorana bound states in this van der Waals material platform.
The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) 1T-WTe$_2$. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS), to study twisted bilayer (tBL) WTe$_2$ with three different orientations and compare it to a topologically trivial as-grown bilayer. We observe the characteristic spectroscopic signature of the QSH edge state in the twisted bilayers, including along a coinciding edge where two sets of QSH edge states sit on top of the other. By comparing our experimental observations to first principles calculations, we conclude that the twisted bilayers are weakly coupled, preserving the QSH states and preventing back scattering.
We report the observation of quantum Hall effect (QHE) in a Bi$_2$Se$_3$ single crystal having carrier concentration ($n$) $sim1.13times10^{19}$cm$^{-3}$, three dimensional Fermi surface and bulk transport characteristics. The plateaus in Hall resistivity coincide with minima of Shubnikov de Haas oscillations in resistivity. Our results demonstrate that the presence of perfect two dimensional transport is not an essential condition for QHE in Bi$_2$Se$_3$. The results of high resolution x-ray diffraction (HRXRD), energy-dispersive x-ray spectroscopy (EDX), and residual resistivity measurements show the presence of enhanced crystalline defects and microstrain. We propose that the formation of localized state at the edge of each Landau level due to resonance between the bulk and defect band of Bi$_2$Se$_3$ causes the quantum Hall effect.
122 - P. Chen , W.-W. Pai , Y.-H. Chan 2018
Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in these single layers are generally a planar projection of the corresponding bulk CDWs because of the quasi-two-dimensional nature of TMDCs; a different CDW symmetry is unexpected. We report herein the successful creation of pristine single-layer VSe$_2$, which shows a ($sqrt7 times sqrt3$) CDW in contrast to the (4 $times$ 4) CDW for the layers in bulk VSe$_2$. Angle-resolved photoemission spectroscopy (ARPES) from the single layer shows a sizable ($sqrt7 times sqrt3$) CDW gap of $sim$100 meV at the zone boundary, a 220 K CDW transition temperature twice the bulk value, and no ferromagnetic exchange splitting as predicted by theory. This robust CDW with an exotic broken symmetry as the ground state is explained via a first-principles analysis. The results illustrate a unique CDW phenomenon in the two-dimensional limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا