Do you want to publish a course? Click here

Depression Severity Estimation from Multiple Modalities

222   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Depression is a major debilitating disorder which can affect people from all ages. With a continuous increase in the number of annual cases of depression, there is a need to develop automatic techniques for the detection of the presence and extent of depression. In this AVEC challenge we explore different modalities (speech, language and visual features extracted from face) to design and develop automatic methods for the detection of depression. In psychology literature, the PHQ-8 questionnaire is well established as a tool for measuring the severity of depression. In this paper we aim to automatically predict the PHQ-8 scores from features extracted from the different modalities. We show that visual features extracted from facial landmarks obtain the best performance in terms of estimating the PHQ-8 results with a mean absolute error (MAE) of 4.66 on the development set. Behavioral characteristics from speech provide an MAE of 4.73. Language features yield a slightly higher MAE of 5.17. When switching to the test set, our Turn Features derived from audio transcriptions achieve the best performance, scoring an MAE of 4.11 (corresponding to an RMSE of 4.94), which makes our system the winner of the AVEC 2017 depression sub-challenge.



rate research

Read More

With more than 300 million people depressed worldwide, depression is a global problem. Due to access barriers such as social stigma, cost, and treatment availability, 60% of mentally-ill adults do not receive any mental health services. Effective and efficient diagnosis relies on detecting clinical symptoms of depression. Automatic detection of depressive symptoms would potentially improve diagnostic accuracy and availability, leading to faster intervention. In this work, we present a machine learning method for measuring the severity of depressive symptoms. Our multi-modal method uses 3D facial expressions and spoken language, commonly available from modern cell phones. It demonstrates an average error of 3.67 points (15.3% relative) on the clinically-validated Patient Health Questionnaire (PHQ) scale. For detecting major depressive disorder, our model demonstrates 83.3% sensitivity and 82.6% specificity. Overall, this paper shows how speech recognition, computer vision, and natural language processing can be combined to assist mental health patients and practitioners. This technology could be deployed to cell phones worldwide and facilitate low-cost universal access to mental health care.
Multiple Sclerosis (MS) is a chronic, inflammatory and degenerative neurological disease, which is monitored by a specialist using the Expanded Disability Status Scale (EDSS) and recorded in unstructured text in the form of a neurology consult note. An EDSS measurement contains an overall EDSS score and several functional subscores. Typically, expert knowledge is required to interpret consult notes and generate these scores. Previous approaches used limited context length Word2Vec embeddings and keyword searches to predict scores given a consult note, but often failed when scores were not explicitly stated. In this work, we present MS-BERT, the first publicly available transformer model trained on real clinical data other than MIMIC. Next, we present MSBC, a classifier that applies MS-BERT to generate embeddings and predict EDSS and functional subscores. Lastly, we explore combining MSBC with other models through the use of Snorkel to generate scores for unlabelled consult notes. MSBC achieves state-of-the-art performance on all metrics and prediction tasks and outperforms the models generated from the Snorkel ensemble. We improve Macro-F1 by 0.12 (to 0.88) for predicting EDSS and on average by 0.29 (to 0.63) for predicting functional subscores over previous Word2Vec CNN and rule-based approaches.
Film media is a rich form of artistic expression. Unlike photography, and short videos, movies contain a storyline that is deliberately complex and intricate in order to engage its audience. In this paper we present a large scale study comparing the effectiveness of visual, audio, text, and metadata-based features for predicting high-level information about movies such as their genre or estimated budget. We demonstrate the usefulness of content-based methods in this domain in contrast to human-based and metadata-based predictions in the era of deep learning. Additionally, we provide a comprehensive study of temporal feature aggregation methods for representing video and text and find that simple pooling operations are effective in this domain. We also show to what extent different modalities are complementary to each other. To this end, we also introduce Moviescope, a new large-scale dataset of 5,000 movies with corresponding movie trailers (video + audio), movie posters (images), movie plots (text), and metadata.
Humans are emotional creatures. Multiple modalities are often involved when we express emotions, whether we do so explicitly (e.g., facial expression, speech) or implicitly (e.g., text, image). Enabling machines to have emotional intelligence, i.e., recognizing, interpreting, processing, and simulating emotions, is becoming increasingly important. In this tutorial, we discuss several key aspects of multi-modal emotion recognition (MER). We begin with a brief introduction on widely used emotion representation models and affective modalities. We then summarize existing emotion annotation strategies and corresponding computational tasks, followed by the description of main challenges in MER. Furthermore, we present some representative approaches on representation learning of each affective modality, feature fusion of different affective modalities, classifier optimization for MER, and domain adaptation for MER. Finally, we outline several real-world applications and discuss some future directions.
In this work, we address the issues of missing modalities that have arisen from the Visual Question Answer-Difference prediction task and find a novel method to solve the task at hand. We address the missing modality-the ground truth answers-that are not present at test time and use a privileged knowledge distillation scheme to deal with the issue of the missing modality. In order to efficiently do so, we first introduce a model, the Big Teacher, that takes the image/question/answer triplet as its input and outperforms the baseline, then use a combination of models to distill knowledge to a target network (student) that only takes the image/question pair as its inputs. We experiment our models on the VizWiz and VQA-V2 Answer Difference datasets and show through extensive experimentation and ablation the performances of our method and a diverse possibility for future research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا