Do you want to publish a course? Click here

Emotion Recognition from Multiple Modalities: Fundamentals and Methodologies

675   0   0.0 ( 0 )
 Added by Sicheng Zhao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Humans are emotional creatures. Multiple modalities are often involved when we express emotions, whether we do so explicitly (e.g., facial expression, speech) or implicitly (e.g., text, image). Enabling machines to have emotional intelligence, i.e., recognizing, interpreting, processing, and simulating emotions, is becoming increasingly important. In this tutorial, we discuss several key aspects of multi-modal emotion recognition (MER). We begin with a brief introduction on widely used emotion representation models and affective modalities. We then summarize existing emotion annotation strategies and corresponding computational tasks, followed by the description of main challenges in MER. Furthermore, we present some representative approaches on representation learning of each affective modality, feature fusion of different affective modalities, classifier optimization for MER, and domain adaptation for MER. Finally, we outline several real-world applications and discuss some future directions.



rate research

Read More

Machine learning methods, such as deep learning, show promising results in the medical domain. However, the lack of interpretability of these algorithms may hinder their applicability to medical decision support systems. This paper studies an interpretable deep learning technique, called SincNet. SincNet is a convolutional neural network that efficiently learns customized band-pass filters through trainable sinc-functions. In this study, we use SincNet to analyze the neural activity of individuals with Autism Spectrum Disorder (ASD), who experience characteristic differences in neural oscillatory activity. In particular, we propose a novel SincNet-based neural network for detecting emotions in ASD patients using EEG signals. The learned filters can be easily inspected to detect which part of the EEG spectrum is used for predicting emotions. We found that our system automatically learns the high-$alpha$ (9-13 Hz) and $beta$ (13-30 Hz) band suppression often present in individuals with ASD. This result is consistent with recent neuroscience studies on emotion recognition, which found an association between these band suppressions and the behavioral deficits observed in individuals with ASD. The improved interpretability of SincNet is achieved without sacrificing performance in emotion recognition.
Automatic emotion recognition (AER) based on enriched multimodal inputs, including text, speech, and visual clues, is crucial in the development of emotionally intelligent machines. Although complex modality relationships have been proven effective for AER, they are still largely underexplored because previous works predominantly relied on various fusion mechanisms with simply concatenated features to learn multimodal representations for emotion classification. This paper proposes a novel hierarchical fusion graph convolutional network (HFGCN) model that learns more informative multimodal representations by considering the modality dependencies during the feature fusion procedure. Specifically, the proposed model fuses multimodality inputs using a two-stage graph construction approach and encodes the modality dependencies into the conversation representation. We verified the interpretable capabilities of the proposed method by projecting the emotional states to a 2D valence-arousal (VA) subspace. Extensive experiments showed the effectiveness of our proposed model for more accurate AER, which yielded state-of-the-art results on two public datasets, IEMOCAP and MELD.
133 - Soham Dan , Hangfeng He , Dan Roth 2020
Recognizing spatial relations and reasoning about them is essential in multiple applications including navigation, direction giving and human-computer interaction in general. Spatial relations between objects can either be explicit -- expressed as spatial prepositions, or implicit -- expressed by spatial verbs such as moving, walking, shifting, etc. Both these, but implicit relations in particular, require significant common sense understanding. In this paper, we introduce the task of inferring implicit and explicit spatial relations between two entities in an image. We design a model that uses both textual and visual information to predict the spatial relations, making use of both positional and size information of objects and image embeddings. We contrast our spatial model with powerful language models and show how our modeling complements the power of these, improving prediction accuracy and coverage and facilitates dealing with unseen subjects, objects and relations.
Depression is a major debilitating disorder which can affect people from all ages. With a continuous increase in the number of annual cases of depression, there is a need to develop automatic techniques for the detection of the presence and extent of depression. In this AVEC challenge we explore different modalities (speech, language and visual features extracted from face) to design and develop automatic methods for the detection of depression. In psychology literature, the PHQ-8 questionnaire is well established as a tool for measuring the severity of depression. In this paper we aim to automatically predict the PHQ-8 scores from features extracted from the different modalities. We show that visual features extracted from facial landmarks obtain the best performance in terms of estimating the PHQ-8 results with a mean absolute error (MAE) of 4.66 on the development set. Behavioral characteristics from speech provide an MAE of 4.73. Language features yield a slightly higher MAE of 5.17. When switching to the test set, our Turn Features derived from audio transcriptions achieve the best performance, scoring an MAE of 4.11 (corresponding to an RMSE of 4.94), which makes our system the winner of the AVEC 2017 depression sub-challenge.
Emotion classification in text is typically performed with neural network models which learn to associate linguistic units with emotions. While this often leads to good predictive performance, it does only help to a limited degree to understand how emotions are communicated in various domains. The emotion component process model (CPM) by Scherer (2005) is an interesting approach to explain emotion communication. It states that emotions are a coordinated process of various subcomponents, in reaction to an event, namely the subjective feeling, the cognitive appraisal, the expression, a physiological bodily reaction, and a motivational action tendency. We hypothesize that these components are associated with linguistic realizations: an emotion can be expressed by describing a physiological bodily reaction (he was trembling), or the expression (she smiled), etc. We annotate existing literature and Twitter emotion corpora with emotion component classes and find that emotions on Twitter are predominantly expressed by event descriptions or subjective reports of the feeling, while in literature, authors prefer to describe what characters do, and leave the interpretation to the reader. We further include the CPM in a multitask learning model and find that this supports the emotion categorization. The annotated corpora are available at https://www.ims.uni-stuttgart.de/data/emotion.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا