No Arabic abstract
The speed of gravitational waves provides us a new tool to test alternative theories of gravity. The constraint on the speed of gravitational waves from GW170817 and GRB170817A is used to test some classes of Horndeski theory. In particular, we consider the coupling of a scalar field to Einstein tensor and the coupling of the Gauss-Bonnet term to a scalar field. The coupling strength of the Gauss-Bonnet coupling is constrained to be in the order of $10^{-15}$. In the Horndeski theory we show that in order for this theory to satisfy the stringent constraint on the speed of GWs the mass scale $M$ introduced in the non-minimally derivative coupling is constrained to be in the range $10^{15}text{GeV}gg M gtrsim 2times 10^{-35}$GeV taking also under consideration the early times upper bound for the mass scale $M$. The large mass ranges require no fine-tuning because the effect of non-minimally derivative coupling is negligible at late times.
In this paper, we study the properties of gravitational waves in the scalar-tensor-vector gravity theory. The polarizations of the gravitational waves are investigated by analyzing the relative motion of the test particles. It is found that the interaction between the matter and vector field in the theory leads to two additional transverse polarization modes. By making use of the polarization content, the stress-energy pseudo-tensor is calculated by employing the perturbed equation method. Besides, the relaxed field equation for the modified gravity in question is derived by using the Landau-Lifshitz formalism suitable to systems with non-negligible self-gravity.
The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and the nature of cosmic acceleration. A large class of scalar-tensor theories predict that GWs propagate with velocity different than the speed of light, a difference that can be $mathcal{O}(1)$ for many models of dark energy. We determine the conditions behind the anomalous GW speed, namely that the scalar field spontaneously breaks Lorentz invariance and couples to the metric perturbations via the Weyl tensor. If these conditions are realized in nature, the delay between GW and electromagnetic (EM) signals from distant events will run beyond human timescales, making it impossible to measure the speed of GWs using neutron star mergers or other violent events. We present a robust strategy to exclude or confirm an anomalous speed of GWs using eclipsing binary systems, whose EM phase can be exquisitely determined. he white dwarf binary J0651+2844 is a known example of such system that can be used to probe deviations in the GW speed as small as $c_g/c-1gtrsim 2cdot 10^{-12}$ when LISA comes online. This test will either eliminate many contender models for cosmic acceleration or wreck a fundamental pillar of general relativity.
We use data from Supernovae (SNIa) Pantheon sample, from Baryonic Acoustic Oscillations (BAO), and from cosmic chronometers measurements of the Hubble parameter (CC), alongside arguments from Big Bang Nucleosynthesis (BBN), in order to extract constraints on Myrzakulov $F(R,T)$ gravity. This is a connection-based theory belonging to the Riemann-Cartan subclass, that uses a specific but non-special connection, which then leads to extra degrees of freedom. Our analysis shows that both considered models lead to $sim 1 sigma$ compatibility in all cases. For the involved dimensionless parameter we find that it is constrained to an interval around zero, however the corresponding contours are slightly shifted towards positive values. Furthermore, we use the obtained parameter chains so to reconstruct the corresponding Hubble function, as well as the dark-energy equation-of-state parameter, as a function of redshift. As we show, Model 1 is very close to $Lambda$CDM scenario, while Model 2 resembles it at low redshifts, however at earlier times deviations are allowed. Finally, applying the AIC, BIC and the combined DIC criteria, we deduce that both models present a very efficient fitting behavior, and are statistically equivalent with $Lambda$CDM cosmology, despite the fact that Model 2 does not contain the latter as a limit.
Ghost-free bimetric gravity is a theory of two interacting spin-2 fields, one massless and one massive, in addition to the standard matter particles and fields, thereby generalizing Einsteins theory of general relativity. To parameterize the theory, we use five observables with specific physical interpretations. We present, for the first time, observational constraints on these parameters that: (i) apply to the full theory, (ii) are consistent with a working screening mechanism (i.e., restoring general relativity locally), (iii) exhibit a continuous, real-valued background cosmology (without the Higuchi ghost). For the cosmological constraints, we use data sets from the cosmic microwave background, baryon acoustic oscillations, and type Ia supernovae. Bimetric cosmology provides a good fit to data even for large values of the mixing angle between the massless and massive gravitons. Interestingly, the best-fit model is a self-accelerating solution where the accelerated expansion is due to the dynamical massive spin-2 field, without a cosmological constant. Due to the screening mechanism, the models are consistent with local tests of gravity such as solar system tests and gravitational lensing by galaxies. We also comment on the possibility of alleviating the Hubble tension with this theory.
We study the screening mechanism in the most general scalar-tensor theories that leave gravitational waves unaffected and are thus compatible with recent LIGO/Virgo observations. Using the effective field theory of dark energy approach, we consider the general action for perturbations beyond linear order, focussing on the quasi-static limit. When restricting to the subclass of theories that satisfy the gravitational wave constraints, the fully nonlinear effective Lagrangian contains only three independent parameters. One of these, $beta_1$, is uniquely present in degenerate higher-order theories. We compute the two gravitational potentials for a spherically symmetric matter source and we find that for $beta_1 ge 0$ they decrease as the inverse of the distance, as in standard gravity, while the case $beta_1 < 0$ is ruled out. For $beta_1 > 0$, the two potentials differ and their gravitational constants are not the same on the inside and outside of the body. Generically, the bound on anomalous light bending in the Solar System constrains $beta_1 lesssim 10^{-5}$. Standard gravity can be recovered outside the body by tuning the parameters of the model, in which case $beta_1 lesssim 10^{-2}$ from the Hulse-Taylor pulsar.