Do you want to publish a course? Click here

Observational constraints on bimetric gravity

127   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ghost-free bimetric gravity is a theory of two interacting spin-2 fields, one massless and one massive, in addition to the standard matter particles and fields, thereby generalizing Einsteins theory of general relativity. To parameterize the theory, we use five observables with specific physical interpretations. We present, for the first time, observational constraints on these parameters that: (i) apply to the full theory, (ii) are consistent with a working screening mechanism (i.e., restoring general relativity locally), (iii) exhibit a continuous, real-valued background cosmology (without the Higuchi ghost). For the cosmological constraints, we use data sets from the cosmic microwave background, baryon acoustic oscillations, and type Ia supernovae. Bimetric cosmology provides a good fit to data even for large values of the mixing angle between the massless and massive gravitons. Interestingly, the best-fit model is a self-accelerating solution where the accelerated expansion is due to the dynamical massive spin-2 field, without a cosmological constant. Due to the screening mechanism, the models are consistent with local tests of gravity such as solar system tests and gravitational lensing by galaxies. We also comment on the possibility of alleviating the Hubble tension with this theory.



rate research

Read More

Ghost-free bimetric gravity is an extension of general relativity, featuring a massive spin-2 field coupled to gravity. We parameterize the theory with a set of observables having specific physical interpretations. For the background cosmology and the static, spherically symmetric solutions (for example approximating the gravitational potential of the solar system), there are four directions in the parameter space in which general relativity is approached. Requiring that there is a working screening mechanism and a nonsingular evolution of the Universe, we place analytical constraints on the parameter space which rule out many of the models studied in the literature. Cosmological solutions where the accelerated expansion of the Universe is explained by the dynamical interaction of the massive spin-2 field rather than by a cosmological constant, are still viable.
We use data from Supernovae (SNIa) Pantheon sample, from Baryonic Acoustic Oscillations (BAO), and from cosmic chronometers measurements of the Hubble parameter (CC), alongside arguments from Big Bang Nucleosynthesis (BBN), in order to extract constraints on Myrzakulov $F(R,T)$ gravity. This is a connection-based theory belonging to the Riemann-Cartan subclass, that uses a specific but non-special connection, which then leads to extra degrees of freedom. Our analysis shows that both considered models lead to $sim 1 sigma$ compatibility in all cases. For the involved dimensionless parameter we find that it is constrained to an interval around zero, however the corresponding contours are slightly shifted towards positive values. Furthermore, we use the obtained parameter chains so to reconstruct the corresponding Hubble function, as well as the dark-energy equation-of-state parameter, as a function of redshift. As we show, Model 1 is very close to $Lambda$CDM scenario, while Model 2 resembles it at low redshifts, however at earlier times deviations are allowed. Finally, applying the AIC, BIC and the combined DIC criteria, we deduce that both models present a very efficient fitting behavior, and are statistically equivalent with $Lambda$CDM cosmology, despite the fact that Model 2 does not contain the latter as a limit.
Recently, Kenna-Allison et.al. claimed that bimetric gravity cannot give rise to a viable cosmological expansion history while at the same time being compatible with local gravity tests. In this note we review that claim and combine various results from the literature to provide several simple counter examples. We conclude that the results of Kenna-Allison et.al. cannot hold in general.
We use observational data from Supernovae (SNIa) Pantheon sample, as well as from direct measurements of the Hubble parameter from the cosmic chronometers (CC) sample, in order to extract constraints on the scenario of Barrow holographic dark energy. The latter is a holographic dark energy model based on the recently proposed Barrow entropy, which arises from the modification of the black-hole surface due to quantum-gravitational effects. We first consider the case where the new deformation exponent $Delta$ is the sole model parameter, and we show that although the standard value $Delta=0$, which corresponds to zero deformation, lies within the 1$sigma$ region, a deviation is favored. In the case where we let both $Delta$ and the second model parameter to be free we find that a deviation from standard holographic dark energy is preferred. Additionally, applying the Akaike, Bayesian and Deviance Information Criteria, we conclude that the one-parameter model is statistically compatible with $Lambda$CDM paradigm, and preferred comparing to the two-parameter one. Finally, concerning the present value of the Hubble parameter we find that it is close to the Planck value.
Bimetric gravity can reproduce the accelerated expansion of the Universe, without a cosmological constant. However, the stability of these solutions to linear perturbations has been questioned, suggesting exponential growth of structure in this approximation. We present a simple model of structure formation, for which an analytical solution is derived. The solution is well-behaved, showing that there is no physical instability with respect to these perturbations. The model can yield a growth of structure exhibiting measurable differences from $Lambda$CDM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا