No Arabic abstract
We study the screening mechanism in the most general scalar-tensor theories that leave gravitational waves unaffected and are thus compatible with recent LIGO/Virgo observations. Using the effective field theory of dark energy approach, we consider the general action for perturbations beyond linear order, focussing on the quasi-static limit. When restricting to the subclass of theories that satisfy the gravitational wave constraints, the fully nonlinear effective Lagrangian contains only three independent parameters. One of these, $beta_1$, is uniquely present in degenerate higher-order theories. We compute the two gravitational potentials for a spherically symmetric matter source and we find that for $beta_1 ge 0$ they decrease as the inverse of the distance, as in standard gravity, while the case $beta_1 < 0$ is ruled out. For $beta_1 > 0$, the two potentials differ and their gravitational constants are not the same on the inside and outside of the body. Generically, the bound on anomalous light bending in the Solar System constrains $beta_1 lesssim 10^{-5}$. Standard gravity can be recovered outside the body by tuning the parameters of the model, in which case $beta_1 lesssim 10^{-2}$ from the Hulse-Taylor pulsar.
In $f(R)$ gravity and Brans-Dicke theory with scalar potentials, we study the structure of neutron stars on a spherically symmetric and static background for two equations of state: SLy and FPS. In massless BD theory, the presence of a scalar coupling $Q$ with matter works to change the star radius in comparison to General Relativity, while the maximum allowed mass of neutron stars is hardly modified for both SLy and FPS equations of state. In Brans-Dicke theory with the massive potential $V(phi)=m^2 phi^2/2$, where $m^2$ is a positive constant, we show the difficulty of realizing neutron star solutions with a stable field profile due to the existence of an exponentially growing mode outside the star. As in $f(R)$ gravity with the $R^2$ term, this property is related to the requirement of extra boundary conditions of the field at the surface of star. For the self-coupling potential $V(phi)=lambda phi^4/4$, this problem can be circumvented by the fact that the second derivative $V_{,phi phi}=3lambdaphi^2$ approaches 0 at spatial infinity. In this case, we numerically show the existence of neutron star solutions for both SLy and FPS equations of state and discuss how the mass-radius relation is modified as compared to General Relativity.
We analyze the propagation of high-frequency gravitational waves (GW) in scalar-tensor theories of gravity, with the aim of examining properties of cosmological distances as inferred from GW measurements. By using symmetry principles, we first determine the most general structure of the GW linearized equations and of the GW energy momentum tensor, assuming that GW move with the speed of light. Modified gravity effects are encoded in a small number of parameters, and we study the conditions for ensuring graviton number conservation in our covariant set-up. We then apply our general findings to the case of GW propagating through a perturbed cosmological space-time, deriving the expressions for the GW luminosity distance $d_L^{({rm GW})}$ and the GW angular distance $d_A^{({rm GW})}$. We prove for the first time the validity of Etherington reciprocity law $d_L^{({rm GW})},=,(1+z)^2,d_A^{({rm GW})}$ for a perturbed universe within a scalar-tensor framework. We find that besides the GW luminosity distance, also the GW angular distance can be modified with respect to General Relativity. We discuss implications of this result for gravitational lensing, focussing on time-delays of lensed GW and lensed photons emitted simultaneously during a multimessenger event. We explicitly show how modified gravity effects compensate between different coefficients in the GW time-delay formula: lensed GW arrive at the same time as their lensed electromagnetic counterparts, in agreement with causality constraints.
We study the cosmology on the Friedmann-Lemaitre-Robertson-Walker background in scalar-vector-tensor theories with a broken $U(1)$ gauge symmetry. For parity-invariant interactions arising in scalar-vector-tensor theories with second-order equations of motion, we derive conditions for the absence of ghosts and Laplacian instabilities associated with tensor, vector, and scalar perturbations at linear order. This general result is applied to the computation of the primordial tensor power spectrum generated during inflation as well as to the speed of gravity relevant to dark energy. We also construct a concrete inflationary model in which a temporal vector component $A_0$ contributes to the dynamics of cosmic acceleration besides a scalar field $phi$ through their kinetic mixings. In this model, we show that all the stability conditions of perturbations can be consistently satisfied during inflation and subsequent reheating.
Kinetic mixing between the metric and scalar degrees of freedom is an essential ingredient in contemporary scalar-tensor theories. This often makes hard to understand their physical content, especially when derivative mixing is present, as it is the case for Horndeski action. In this work we develop a method that allows to write a Ricci curvature-free scalar field equation and discuss some of the advantages of such rephrasing in the study of stability issues in the presence of matter, the existence of an Einstein frame and the generalization of the disformal screening mechanism. For quartic Horndeski theories, such procedure leaves, in general, a residual coupling to curvature, given by the Weyl tensor. This gives rise to a binary classification of scalar-tensor theories into stirred theories, for which the curvature can be substituted for, and shaken theories for which a residual coupling to curvature remains. Quite remarkably, we have found that generalized DBI Galileons belong to the first class. Finally, we discuss kinetic mixing in quintic theories for which non-linear mixing terms appears and in the recently proposed theories beyond Horndeski which display a novel form of kinetic mixing, in which the field equation is sourced by derivatives of the energy-momentum tensor.
In this paper we investigate the asymptotic dynamics of inflationary cosmological models that are based in scalar-tensor theories of gravity. Our main aim is to explore the global structure of the phase space in the framework of single-field inflation models. For this purpose we make emphasis in the adequate choice of the variables of the phase space. Our results indicate that, although single-field inflation is generic in the sense that the corresponding critical point in the phase space exists for a wide class of potentials, along given phase space orbits -- representing potential cosmic histories -- the occurrence of the inflationary stage is rather dependent on the initial conditions. We have been able to give quantitative estimates of the relative probability (RP) for initial conditions leading to slow-roll inflation. For the non-minimal coupling model with the $phi^2$-potential our rough estimates yield to an almost vanishing relative probability: $10^{-13},%lesssim RPll 10^{-8},%$. These bonds are greatly improved in the scalar-tensor models, including the Brans-Dicke theory, where the relative probability $1,%lesssim RPleq 100,%$. Hence slow-roll inflation is indeed a natural stage of the cosmic expansion in Brans-Dicke models of inflation. It is confirmed as well that the dynamics of vacuum Brans-Dicke theories with arbitrary potentials are non-chaotic.