Do you want to publish a course? Click here

Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter

220   0   0.0 ( 0 )
 Added by David T Stephen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum phases of matter are resources for notions of quantum computation. In this work, we establish a new link between concepts of quantum information theory and condensed matter physics by presenting a unified understanding of symmetry-protected topological (SPT) order protected by subsystem symmetries and its relation to measurement-based quantum computation (MBQC). The key unifying ingredient is the concept of quantum cellular automata (QCA) which we use to define subsystem symmetries acting on rigid lower-dimensional lines or fractals on a 2D lattice. Notably, both types of symmetries are treated equivalently in our framework. We show that states within a non-trivial SPT phase protected by these symmetries are indicated by the presence of the same QCA in a tensor network representation of the state, thereby characterizing the structure of entanglement that is uniformly present throughout these phases. By also formulating schemes of MBQC based on these QCA, we are able to prove that most of the phases we construct are computationally universal phases of matter, in which every state is a resource for universal MBQC. Interestingly, our approach allows us to construct computational phases which have practical advantages over previous examples, including a computational speedup. The significance of the approach stems from constructing novel computationally universal phases of matter and showcasing the power of tensor networks and quantum information theory in classifying subsystem SPT order.



rate research

Read More

We construct a three-dimensional quantum cellular automaton (QCA), an automorphism of the local operator algebra on a lattice of qubits, which disentangles the ground state of the Walker-Wang three fermion model. We show that if this QCA can be realized by a quantum circuit of constant depth, then there exists a two-dimensional commuting projector Hamiltonian which realizes the three fermion topological order which is widely believed not to be possible. We conjecture in accordance with this belief that this QCA is not a quantum circuit of constant depth, and we provide two further pieces of evidence to support the conjecture. We show that this QCA maps every local Pauli operator to a local Pauli operator, but is not a Clifford circuit of constant depth. Further, we show that if the three-dimensional QCA can be realized by a quantum circuit of constant depth, then there exists a two-dimensional QCA acting on fermionic degrees of freedom which cannot be realized by a quantum circuit of constant depth; i.e., we prove the existence of a nontrivial QCA in either three or two dimensions. The square of our three-dimensional QCA can be realized by a quantum circuit of constant depth, and this suggests the existence of a $mathbb{Z}_2$ invariant of a QCA in higher dimensions, totally distinct from the classification by positive rationals (i.e., by one integer index for each prime) in one dimension. In an appendix, unrelated to the main body of this paper, we give a fermionic generalization of a result of Bravyi and Vyalyi on ground states of 2-local commuting Hamiltonians.
83 - C. Wetterich 2020
A classical local cellular automaton can describe an interacting quantum field theory for fermions. We construct a simple classical automaton for a particular version of the Thirring model with imaginary coupling. This interacting fermionic quantum field theory obeys a unitary time evolution and shows all properties of quantum mechanics. Classical cellular automata with probabilistic initial conditions admit a description in the formalism of quantum mechanics. Our model exhibits interesting features as spontaneous symmetry breaking or solitons. The same model can be formulated as a generalized Ising model. This euclidean lattice model can be investigated by standard techniques of statistical physics as Monte Carlo simulations. Our model is an example how quantum mechanics emerges from classical statistics.
One can think of some physical evolutions as being the emergent-effective result of a microscopic discrete model. Inspired by classical coarse-graining procedures, we provide a simple procedure to coarse-grain color-blind quantum cellular automata that follow Goldilocks rules. The procedure consists in (i) space-time grouping the quantum cellular automaton (QCA) in cells of size $N$; (ii) projecting the states of a cell onto its borders, connecting them with the fine dynamics; (iii) describing the overall dynamics by the border states, that we call signals; and (iv) constructing the coarse-grained dynamics for different sizes $N$ of the cells. A byproduct of this simple toy-model is a general discrete analog of the Stokes law. Moreover we prove that in the spacetime limit, the automaton converges to a Dirac free Hamiltonian. The QCA we introduce here can be implemented by present-day quantum platforms, such as Rydberg arrays, trapped ions, and superconducting qbits. We hope our study can pave the way to a richer understanding of those systems with limited resolution.
There exists an index theory to classify strictly local quantum cellular automata in one dimension. We consider two classification questions. First, we study to what extent this index theory can be applied in higher dimensions via dimensional reduction, finding a classification by the first homology group of the manifold modulo torsion. Second, in two dimensions, we show that an extension of this index theory (including torsion) fully classifies quantum cellular automata, at least in the absence of fermionic degrees of freedom. This complete classification in one and two dimensions by index theory is not expected to extend to higher dimensions due to recent evidence of a nontrivial automaton in three dimensions. Finally, we discuss some group theoretical aspects of the classification of quantum cellular automata and consider these automata on higher dimensional real projective spaces.
In a series of recent papers it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا