Do you want to publish a course? Click here

Search for hidden-photon dark matter with the FUNK experiment

109   0   0.0 ( 0 )
 Added by Darko Veberic
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many extensions of the Standard Model of particle physics predict a parallel sector of a new U(1) symmetry, giving rise to hidden photons. These hidden photons are candidate particles for cold dark matter. They are expected to kinetically mix with regular photons, which leads to a tiny oscillating electric-field component accompanying dark matter particles. A conducting surface can convert such dark matter particles into photons which are emitted almost perpendicularly to the surface. The corresponding photon frequency follows from the mass of the hidden photons. In this contribution we present a preliminary result on a hidden photon search in the visible and near-UV wavelength range that was done with a large, 14 m2 spherical metallic mirror and discuss future dark matter searches in the eV and sub-eV range by application of different detectors for electromagnetic radiation.



rate research

Read More

It has been proposed that an additional U(1) sector of hidden photons could account for the Dark Matter observed in the Universe. When passing through an interface of materials with different dielectric properties, hidden photons can give rise to photons whose wavelengths are related to the mass of the hidden photons. In this contribution we report on measurements covering the visible and near-UV spectrum that were done with a large, 14 m2 spherical metallic mirror and discuss future dark-matter searches in the eV and sub-eV range by application of different electromagnetic radiation detectors.
The DAMIC (Dark Matter in CCDs) experiment searches for the interactions of dark matter particles with the nuclei and the electrons in the silicon bulk of thick fully depleted charge-coupled devices (CCDs). Because of the low noise and low dark current, DAMIC CCDs are sensitive to the ionization signals expected from low-mass dark matter particles ($< 10$ GeV). A 40-gram target detector has collected data at the SNOLAB underground laboratory since 2017. Recent results from the searches for DM-electron scattering and hidden-photon absorption will be summarized and the status of WIMPs-nucleon search reported. A new detector -- DAMIC-M (DAMIC at Modane) -- with a mass-size of 1 kg and improved CCD readout is under design and will be installed at the underground laboratory of Modane, in France. The current status of DAMIC-M and the near future plans will be presented.
Hidden photons are dark matter candidates motivated by theories beyond the standard model of particle physics. They mix with conventional photons, and they can be detected through the very weak electromagnetic radiation they induce at the interface between a metal and the air. SHUKET (SearcH for U(1) darK matter with an Electromagnetic Telescope) is a dedicated experiment sensitive to the hidden photon-induced signal. The results from a hidden photon search campaign are reported, with no significant detection of a dark matter signal. Exclusion limits are derived from the observed noise fluctuations in a 5 GHz to 6.8 GHz frequency range, corresponding to a hidden photon mass region ranging from 20.8 micro-eV to 28.3 micro-eV. SHUKET is currently the most sensitive instrument in this mass range and the obtained limits on the kinetic mixing term constrain significantly dark matter models inspired from string theory.
A haloscope of the QUAX--$agamma$ experiment composed of an oxygen-free high thermal conductivity-Cu cavity inside an 8.1 T magnet and cooled to $sim200$ mK is put in operation for the search of galactic axion with mass $m_asimeq43~mutext{eV}$. The power emitted by the resonant cavity is amplified with a Josephson parametric amplifier whose noise fluctuations are at the standard quantum limit. With the data collected in about 1 h at the cavity frequency $ u_c=10.40176$ GHz, the experiment reaches the sensitivity necessary for the detection of galactic QCD-axion, setting the $90%$ confidence level limit to the axion-photon coupling $g_{agammagamma}<0.639times10^{-13}$ GeV$^{-1}$.
113 - Hao Ma , Ze She , Zhongzhi Liu 2019
The China Dark Matter Experiment (CDEX), located at the China Jinping Underground Laboratory (CJPL) whose overburden is about 2400m rock, aims at direct searches of light Weakly Interacting Massive Particles (WIMPs). A single-element 994-gram p-type point contact (PPC) germanium detector (CDEX-1B) runs inside a solid passive shielding system. To achieve lower background, a prototype 10kg PPC germanium detector array (CDEX-10), consisting of three detector strings with three germanium crystals each, is directly immersed in the liquid nitrogen. With the energy threshold of 160eV, the limits on WIMP-nucleus scattering are set by energy spectra and annual modulation analysis, respectively. Incorporating Migdal effect, the data of CDEX-1B are re-analyzed to search sub-GeV WIMPs. Finally, the future plan of CDEX experiment in CJPL-II is introduced.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا