Do you want to publish a course? Click here

Search for invisible axion dark matter of mass m$_a=43~mu$eV with the QUAX--$agamma$ experiment

82   0   0.0 ( 0 )
 Added by Alessio Rettaroli
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A haloscope of the QUAX--$agamma$ experiment composed of an oxygen-free high thermal conductivity-Cu cavity inside an 8.1 T magnet and cooled to $sim200$ mK is put in operation for the search of galactic axion with mass $m_asimeq43~mutext{eV}$. The power emitted by the resonant cavity is amplified with a Josephson parametric amplifier whose noise fluctuations are at the standard quantum limit. With the data collected in about 1 h at the cavity frequency $ u_c=10.40176$ GHz, the experiment reaches the sensitivity necessary for the detection of galactic QCD-axion, setting the $90%$ confidence level limit to the axion-photon coupling $g_{agammagamma}<0.639times10^{-13}$ GeV$^{-1}$.



rate research

Read More

86 - N. Du , N. Force , R. Khatiwada 2018
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultra-low-noise SQUID amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
The axion is a promising dark matter candidate, which was originally proposed to solve the strong-CP problem in particle physics. To date, the available parameter space for axion and axion-like particle dark matter is relatively unexplored, particularly at masses $m_alesssim1,mu$eV. ABRACADABRA is a new experimental program to search for axion dark matter over a broad range of masses, $10^{-12}lesssim m_alesssim10^{-6}$ eV. ABRACADABRA-10 cm is a small-scale prototype for a future detector that could be sensitive to the QCD axion. In this Letter, we present the first results from a 1 month search for axions with ABRACADABRA-10 cm. We find no evidence for axion-like cosmic dark matter and set 95% C.L. upper limits on the axion-photon coupling between $g_{agammagamma}<1.4times10^{-10}$ GeV$^{-1}$ and $g_{agammagamma}<3.3times10^{-9}$ GeV$^{-1}$ over the mass range $3.1times10^{-10}$ eV - $8.3times10^{-9}$ eV. These results are competitive with the most stringent astrophysical constraints in this mass range.
This paper reports on a cavity haloscope search for dark matter axions in the galactic halo in the mass range $2.81$-$3.31$ ${mu}eV$. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible axion that solve the strong CP problem of quantum chromodynamics, and marks the first time a haloscope search has been able to search for axions at mode crossings using an alternate cavity configuration. Unprecedented sensitivity in this higher mass range is achieved by deploying an ultra low-noise Josephson parametric amplifier as the first stage signal amplifier.
The DAMIC (Dark Matter in CCDs) experiment searches for the interactions of dark matter particles with the nuclei and the electrons in the silicon bulk of thick fully depleted charge-coupled devices (CCDs). Because of the low noise and low dark current, DAMIC CCDs are sensitive to the ionization signals expected from low-mass dark matter particles ($< 10$ GeV). A 40-gram target detector has collected data at the SNOLAB underground laboratory since 2017. Recent results from the searches for DM-electron scattering and hidden-photon absorption will be summarized and the status of WIMPs-nucleon search reported. A new detector -- DAMIC-M (DAMIC at Modane) -- with a mass-size of 1 kg and improved CCD readout is under design and will be installed at the underground laboratory of Modane, in France. The current status of DAMIC-M and the near future plans will be presented.
Many extensions of the Standard Model of particle physics predict a parallel sector of a new U(1) symmetry, giving rise to hidden photons. These hidden photons are candidate particles for cold dark matter. They are expected to kinetically mix with regular photons, which leads to a tiny oscillating electric-field component accompanying dark matter particles. A conducting surface can convert such dark matter particles into photons which are emitted almost perpendicularly to the surface. The corresponding photon frequency follows from the mass of the hidden photons. In this contribution we present a preliminary result on a hidden photon search in the visible and near-UV wavelength range that was done with a large, 14 m2 spherical metallic mirror and discuss future dark matter searches in the eV and sub-eV range by application of different detectors for electromagnetic radiation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا