Do you want to publish a course? Click here

Direct Searches for Hidden-Photon Dark Matter with the SHUKET Experiment

119   0   0.0 ( 0 )
 Added by Pierre Brun
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hidden photons are dark matter candidates motivated by theories beyond the standard model of particle physics. They mix with conventional photons, and they can be detected through the very weak electromagnetic radiation they induce at the interface between a metal and the air. SHUKET (SearcH for U(1) darK matter with an Electromagnetic Telescope) is a dedicated experiment sensitive to the hidden photon-induced signal. The results from a hidden photon search campaign are reported, with no significant detection of a dark matter signal. Exclusion limits are derived from the observed noise fluctuations in a 5 GHz to 6.8 GHz frequency range, corresponding to a hidden photon mass region ranging from 20.8 micro-eV to 28.3 micro-eV. SHUKET is currently the most sensitive instrument in this mass range and the obtained limits on the kinetic mixing term constrain significantly dark matter models inspired from string theory.



rate research

Read More

Many extensions of the Standard Model of particle physics predict a parallel sector of a new U(1) symmetry, giving rise to hidden photons. These hidden photons are candidate particles for cold dark matter. They are expected to kinetically mix with regular photons, which leads to a tiny oscillating electric-field component accompanying dark matter particles. A conducting surface can convert such dark matter particles into photons which are emitted almost perpendicularly to the surface. The corresponding photon frequency follows from the mass of the hidden photons. In this contribution we present a preliminary result on a hidden photon search in the visible and near-UV wavelength range that was done with a large, 14 m2 spherical metallic mirror and discuss future dark matter searches in the eV and sub-eV range by application of different detectors for electromagnetic radiation.
Direct-detection searches for axions and hidden photons are playing an increasingly prominent role in the search for dark matter. In this work, we derive the properties of optimal electromagnetic searches for these candidates, subject to the Standard Quantum Limit (SQL) on amplification. We show that a single-pole resonant search may possess substantial sensitivity outside of the resonator bandwidth and that optimizing this sensitivity may increase scan rates by up to five orders of magnitude at low frequencies. Additional enhancements can be obtained with resonator quality factors exceeding one million, which corresponds to the linewidth of the dark matter signal. We present the resonator optimization in the broader context of determining the optimal receiver architecture (resonant or otherwise). We discuss prior probabilities on the dark matter signal and their role in the search optimization. We determine frequency-integrated sensitivity to be the figure of merit in a wideband search and demonstrate that it is limited by the Bode-Fano criterion. The optimized single-pole resonator is approximately 75% of the Bode-Fano limit, establishing it as a fundamentally near-ideal, single-moded dark matter detection scheme. Our analysis shows, in contrast to previous work, that the scanned single-pole resonant search is superior to a reactive broadband search. Our results motivate the broad application of quantum measurement techniques evading the SQL in future axion and hidden-photon dark matter searches.
It has been proposed that an additional U(1) sector of hidden photons could account for the Dark Matter observed in the Universe. When passing through an interface of materials with different dielectric properties, hidden photons can give rise to photons whose wavelengths are related to the mass of the hidden photons. In this contribution we report on measurements covering the visible and near-UV spectrum that were done with a large, 14 m2 spherical metallic mirror and discuss future dark-matter searches in the eV and sub-eV range by application of different electromagnetic radiation detectors.
86 - N. Du , N. Force , R. Khatiwada 2018
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultra-low-noise SQUID amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
130 - Ivan De Mitri 2002
The results of dark matter searches with the MACRO experiment are reported. In particular indirect searches for WIMPs and direct searches for supermassive GUT magnetic monopoles are reported together with massive neutrino studies through the measurement of the oscillation induced anomalies in the atmospheric neutrino flux.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا