Do you want to publish a course? Click here

Probing Leptogenesis

71   0   0.0 ( 0 )
 Added by Julia Harz
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The focus of this chapter lies on the possible experimental tests of leptogenesis scenarios. We consider both leptogenesis generated from oscillations, as well as leptogenesis from out-of-equilibrium decays. As the Akhmedov-Rubakov-Smirnov (ARS) mechanism allows for heavy neutrinos in the GeV range, this opens up a plethora of possible experimental tests, e.g. at neutrino oscillation experiments, neutrinoless double beta decay, and direct searches for neutral heavy leptons at future facilities. In contrast, testing leptogenesis from out-of-equilibrium decays is a quite difficult task. We comment on the necessary conditions for having successful leptogenesis at the TeV-scale. We further discuss possible realizations and their model specific testability in extended seesaw models, models with extended gauge sectors, and supersymmetric leptogenesis. Not being able to test high-scale leptogenesis directly, we present a way to falsify such scenarios by focusing on their washout processes. This is discussed specifically for the left-right symmetric model and the observation of a heavy $W_R$, as well as model independently when measuring $Delta L = 2$ washout processes at the LHC or neutrinoless double beta decay.



rate research

Read More

We explore direct collider probes of the resonant leptogenesis mechanism for the origin of matter. We work in the context of theories where the Standard Model is extended to include an additional gauged U(1) symmetry broken at the TeV scale, and where the light neutrinos obtain mass through a Type I seesaw at this scale. The CP asymmetry that generates the observed matter-antimatter asymmetry manifests itself in a difference between the number of positive and negative like-sign dileptons N(ell^+ell^+)-N(ell^-ell^-) that arise in the decay of the new Z gauge boson to two right-handed neutrinos N, and their subsequent decay to leptons. The relatively low efficiency of resonant leptogenesis in this class of models implies that the CP asymmetry, epsilon, is required to be sizable, i.e. of order one. In particular, from the sign of the baryon asymmetry of the Universe, emph{an excess of antileptons is predicted}. We identify the domains in M_{Z}--M_N space where such a direct test is possible and find that with 300~fb^{-1} of data and no excess found, the LHC can set the $2sigma$ exclusion limit epsilon lesssim 0.22.
We investigate the potential of the International Linear Collider (ILC) to probe the mechanisms of neutrino mass generation and leptogenesis within the minimal seesaw model. Our results can also be used as an estimate for the potential of a Compact Linear Collider (CLIC). We find that heavy sterile neutrinos that simultaneously explain both, the observed light neutrino oscillations and the baryon asymmetry of the universe, can be found in displaced vertex searches at ILC. We further study the precision at which the flavour-dependent active-sterile mixing angles can be measured. The measurement of the ratios of these mixing angles, and potentially also of the heavy neutrino mass splitting, can test whether minimal type I seesaw models are the origin of the light neutrino masses, and it can be a first step towards probing leptogenesis as the mechanism of baryogenesis. Our results show that the ILC can be used as a discovery machine for New Physics in feebly coupled sectors that can address fundamental questions in particle physics and cosmology.
We present a new leptogenesis scenario, where the lepton asymmetry is generated by CP violating decays of heavy electroweak singlet neutrinos via electromagnetic dipole moment couplings to the ordinary light neutrinos. Akin to the usual scenario where the decays are mediated through Yukawa interactions, we have shown, by explicit calculations, that the desired asymmetry can be produced through the interference of the corresponding tree-level and one-loop decay amplitudes involving the effective dipole moment operators. We also find that the relationship of the leptogenesis scale to the light neutrino masses is similar to that for the standard Yukawa-mediated mechanism.
We explore here a new mechanism by which the out of equilibrium decay of heavy gravitinos, followed by possible R-parity violating decays in the Minimal Supersymmetric Standard Model (MSSM) can generate the baryon asymmetry of the universe. In this mechanism, gravitino decay produces a CP-asymmetry that is carried by squarks or sleptons. These particles then decay through R-parity violating operators generating a lepton asymmetry. The lepton asymmetry is converted into a baryon asymmetry by weak sphalerons, as in the familiar case of leptogenesis by Majorana neutrino decays. To ensure that the gravitino decays while the sphaleron is still in equilibrium, we obtain a lower bound on the gravitino mass, $m_{3/2} gtrsim 10^{8} GeV$, and therefore our mechanism requires a high scale of SUSY breaking, as well as minimum reheating temperature after inflation of $Tgtrsim 10^{12} GeV$ in order to for the gravitino density to be sufficiently large to generate the baryon asymmetry today. We consider each of the MSSMs relevant R-parity violating operators in turn, and derive constraints on parameters in order to give rise to a baryon asymmetry comparable to that observed today, consistent with low energy phenomenological bounds on SUSY models.
We propose a new non-thermal Leptogenesis mechanism that takes place during the reheating epoch, and utilizes the Ratchet mechanism. The interplay between the oscillation of the inflaton during reheating and a scalar lepton leads to a dynamical system that emulates the well-known forced pendulum. This is found to produce driven motion in the phase of the scalar lepton which leads to the generation of a non-zero lepton number density that is later redistributed to baryon number via sphaleron processes. This model successfully reproduces the observed baryon asymmetry, while simultaneously providing an origin for neutrino masses via the seesaw mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا