No Arabic abstract
We propose a new non-thermal Leptogenesis mechanism that takes place during the reheating epoch, and utilizes the Ratchet mechanism. The interplay between the oscillation of the inflaton during reheating and a scalar lepton leads to a dynamical system that emulates the well-known forced pendulum. This is found to produce driven motion in the phase of the scalar lepton which leads to the generation of a non-zero lepton number density that is later redistributed to baryon number via sphaleron processes. This model successfully reproduces the observed baryon asymmetry, while simultaneously providing an origin for neutrino masses via the seesaw mechanism.
We present a new leptogenesis scenario, where the lepton asymmetry is generated by CP violating decays of heavy electroweak singlet neutrinos via electromagnetic dipole moment couplings to the ordinary light neutrinos. Akin to the usual scenario where the decays are mediated through Yukawa interactions, we have shown, by explicit calculations, that the desired asymmetry can be produced through the interference of the corresponding tree-level and one-loop decay amplitudes involving the effective dipole moment operators. We also find that the relationship of the leptogenesis scale to the light neutrino masses is similar to that for the standard Yukawa-mediated mechanism.
We explore here a new mechanism by which the out of equilibrium decay of heavy gravitinos, followed by possible R-parity violating decays in the Minimal Supersymmetric Standard Model (MSSM) can generate the baryon asymmetry of the universe. In this mechanism, gravitino decay produces a CP-asymmetry that is carried by squarks or sleptons. These particles then decay through R-parity violating operators generating a lepton asymmetry. The lepton asymmetry is converted into a baryon asymmetry by weak sphalerons, as in the familiar case of leptogenesis by Majorana neutrino decays. To ensure that the gravitino decays while the sphaleron is still in equilibrium, we obtain a lower bound on the gravitino mass, $m_{3/2} gtrsim 10^{8} GeV$, and therefore our mechanism requires a high scale of SUSY breaking, as well as minimum reheating temperature after inflation of $Tgtrsim 10^{12} GeV$ in order to for the gravitino density to be sufficiently large to generate the baryon asymmetry today. We consider each of the MSSMs relevant R-parity violating operators in turn, and derive constraints on parameters in order to give rise to a baryon asymmetry comparable to that observed today, consistent with low energy phenomenological bounds on SUSY models.
The focus of this chapter lies on the possible experimental tests of leptogenesis scenarios. We consider both leptogenesis generated from oscillations, as well as leptogenesis from out-of-equilibrium decays. As the Akhmedov-Rubakov-Smirnov (ARS) mechanism allows for heavy neutrinos in the GeV range, this opens up a plethora of possible experimental tests, e.g. at neutrino oscillation experiments, neutrinoless double beta decay, and direct searches for neutral heavy leptons at future facilities. In contrast, testing leptogenesis from out-of-equilibrium decays is a quite difficult task. We comment on the necessary conditions for having successful leptogenesis at the TeV-scale. We further discuss possible realizations and their model specific testability in extended seesaw models, models with extended gauge sectors, and supersymmetric leptogenesis. Not being able to test high-scale leptogenesis directly, we present a way to falsify such scenarios by focusing on their washout processes. This is discussed specifically for the left-right symmetric model and the observation of a heavy $W_R$, as well as model independently when measuring $Delta L = 2$ washout processes at the LHC or neutrinoless double beta decay.
It has been recently shown that the quantum Boltzmann equations may be relevant for the leptogenesis scenario. In particular, they lead to a time-dependent CP asymmetry which depends upon the previous dynamics of the system. This memory effect in the CP asymmetry is particularly important in resonant leptogenesis where the asymmetry is generated by the decays of nearly mass-degenerate right-handed neutrinos. We study the impact of the nontrivial time evolution of the CP asymmetry in resonant leptogenesis, both in the one-flavour case and with flavour effects included. We show that significant qualitative and quantitative differences arise with respect to the case in which the time dependence of the CP asymmetry is neglected.
We present a leptogenesis mechanism based on the standard type-I seesaw model that successfully operates at right-handed-neutrino masses as low as a few 100 TeV. This mechanism, which we dub wash-in leptogenesis, does not require any CP violation in the neutrino sector and can be implemented even in the regime of strong wash-out. The key idea behind wash-in leptogenesis is to generalize standard freeze-out leptogenesis to a nonminimal cosmological background in which the chemical potentials of all particles not in chemical equilibrium at the temperature of leptogenesis are allowed to take arbitrary values. This sets the stage for building a plethora of new baryogenesis models where chemical potentials generated at high temperatures are reprocessed to generate a nonvanishing B-L asymmetry at low temperatures. As concrete examples, we discuss wash-in leptogenesis after axion inflation and in the context of grand unification.