Do you want to publish a course? Click here

Search for low-mass Dark Matter with the CRESST Experiment

373   0   0.0 ( 0 )
 Added by Holger Kluck
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

CRESST is a multi-stage experiment directly searching for dark matter (DM) using cryogenic $mathrm{CaWO_4}$ crystals. Previous stages established leading limits for the spin-independent DM-nucleon cross section down to DM-particle masses $m_mathrm{DM}$ below $1,mathrm{GeV/c^2}$. Furthermore, CRESST performed a dedicated search for dark photons (DP) which excludes new parameter space between DP masses $m_mathrm{DP}$ of $300,mathrm{eV/c^2}$ to $700,mathrm{eV/c^2}$. In this contribution we will discuss the latest results based on the previous CRESST-II phase 2 and we will report on the status of the current CRESST-III phase 1: in this stage we have been operating 10 upgraded detectors with $24,mathrm{g}$ target mass each and enhanced detector performance since summer 2016. The improved detector design in terms of background suppression and reduction of the detection threshold will be discussed with respect to the previous stage. We will conclude with an outlook on the potential of the next stage, CRESST-III phase 2.



rate research

Read More

The CRESST-III experiment which is dedicated to low-mass dark matter search uses scintillating CaWO$_4$ crystals operated as cryogenic particle detectors. Background discrimination is achieved by exploiting the scintillating light signal of CaWO$_4$ and by a novel active detector holder presented in this paper. In a test setup above ground, a nuclear-recoil energy threshold of $E_{th}=(190.6pm5.2)$eV is reached with a 24g prototype detector, which corresponds to an estimated threshold of $sim$50eV when being operated in the low-noise CRESST cryostat. This is the lowest threshold reported for direct dark matter searches. For CRESST-III phase 1, ten such detector modules were installed in the cryostat which have the potential to improve significantly the sensitivity to scatterings of dark matter particles with masses down to $sim$0.1GeV/c$^2$.
The CRESST experiment aims for a detection of dark matter in the form of WIMPs. These particles are expected to scatter elastically off the nuclei of a target material, thereby depositing energy on the recoiling nucleus. CRESST uses scintillating CaWO4 crystals as such a target. The energy deposited by an interacting particle is primarily converted to phonons which are detected by transition edge sensors. In addition, a small fraction of the interaction energy is emitted from the crystals in the form of scintillation light which is measured in coincidence with the phonon signal by a separate cryogenic light detector for each target crystal. The ratio of light to phonon energy permits the discrimination between the nuclear recoils expected from WIMPs and events from radioactive backgrounds which primarily lead to electron recoils. CRESST has shown the success of this method in a commissioning run in 2007 and, since then, further investigated possibilities for an even better suppression of backgrounds. Here, we report on a new class of background events observed in the course of this work. The consequences of this observation are discussed and we present the current status of the experiment.
The CRESST experiment, located at Laboratori Nazionali del Gran Sasso in Italy, searches for dark matter particles via their elastic scattering off nuclei in a target material. The CRESST target consists of scintillating CaWO$_4$ crystals, which are operated as cryogenic calorimeters at millikelvin temperatures. Each interaction in the CaWO$_4$ target crystal produces a phonon signal and a light signal that is measured by a second cryogenic calorimeter. Since the CRESST-II result in 2015, the experiment is leading the field of direct dark matter search for dark matter masses below 1.7,GeV/$c^2$, extending the reach of direct searches to the sub-GeV/$c^2$ mass region. For CRESST-III, whose Phase 1 started in July 2016, detectors have been optimized to reach the performance required to further probe the low-mass region with unprecedented sensitivity. In this contribution the achievements of the CRESST-III detectors will be discussed together with preliminary results and perspectives of Phase 1.
The DAMIC (Dark Matter in CCDs) experiment searches for the interactions of dark matter particles with the nuclei and the electrons in the silicon bulk of thick fully depleted charge-coupled devices (CCDs). Because of the low noise and low dark current, DAMIC CCDs are sensitive to the ionization signals expected from low-mass dark matter particles ($< 10$ GeV). A 40-gram target detector has collected data at the SNOLAB underground laboratory since 2017. Recent results from the searches for DM-electron scattering and hidden-photon absorption will be summarized and the status of WIMPs-nucleon search reported. A new detector -- DAMIC-M (DAMIC at Modane) -- with a mass-size of 1 kg and improved CCD readout is under design and will be installed at the underground laboratory of Modane, in France. The current status of DAMIC-M and the near future plans will be presented.
We present the results of a search for dark matter WIMPs in the mass range below 20 GeV/c^2 using a target of low-radioactivity argon. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso (LNGS). The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 events/keVee/kg/day and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c^2 for the spin-independent cross section of dark matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8-6 GeV/c^2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا