Do you want to publish a course? Click here

A prototype detector for the CRESST-III low-mass dark matter search

103   0   0.0 ( 0 )
 Added by Raimund Strauss
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The CRESST-III experiment which is dedicated to low-mass dark matter search uses scintillating CaWO$_4$ crystals operated as cryogenic particle detectors. Background discrimination is achieved by exploiting the scintillating light signal of CaWO$_4$ and by a novel active detector holder presented in this paper. In a test setup above ground, a nuclear-recoil energy threshold of $E_{th}=(190.6pm5.2)$eV is reached with a 24g prototype detector, which corresponds to an estimated threshold of $sim$50eV when being operated in the low-noise CRESST cryostat. This is the lowest threshold reported for direct dark matter searches. For CRESST-III phase 1, ten such detector modules were installed in the cryostat which have the potential to improve significantly the sensitivity to scatterings of dark matter particles with masses down to $sim$0.1GeV/c$^2$.



rate research

Read More

372 - H. Kluck , G. Angloher , P. Bauer 2017
CRESST is a multi-stage experiment directly searching for dark matter (DM) using cryogenic $mathrm{CaWO_4}$ crystals. Previous stages established leading limits for the spin-independent DM-nucleon cross section down to DM-particle masses $m_mathrm{DM}$ below $1,mathrm{GeV/c^2}$. Furthermore, CRESST performed a dedicated search for dark photons (DP) which excludes new parameter space between DP masses $m_mathrm{DP}$ of $300,mathrm{eV/c^2}$ to $700,mathrm{eV/c^2}$. In this contribution we will discuss the latest results based on the previous CRESST-II phase 2 and we will report on the status of the current CRESST-III phase 1: in this stage we have been operating 10 upgraded detectors with $24,mathrm{g}$ target mass each and enhanced detector performance since summer 2016. The improved detector design in terms of background suppression and reduction of the detection threshold will be discussed with respect to the previous stage. We will conclude with an outlook on the potential of the next stage, CRESST-III phase 2.
The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this manuscript we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1eV. This result was obtained with a 23.6g CaWO$_4$ crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon/heat signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at ~15mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160MeV/c$^2$.
The DAMIC (Dark Matter in CCDs) experiment searches for the interactions of dark matter particles with the nuclei and the electrons in the silicon bulk of thick fully depleted charge-coupled devices (CCDs). Because of the low noise and low dark current, DAMIC CCDs are sensitive to the ionization signals expected from low-mass dark matter particles ($< 10$ GeV). A 40-gram target detector has collected data at the SNOLAB underground laboratory since 2017. Recent results from the searches for DM-electron scattering and hidden-photon absorption will be summarized and the status of WIMPs-nucleon search reported. A new detector -- DAMIC-M (DAMIC at Modane) -- with a mass-size of 1 kg and improved CCD readout is under design and will be installed at the underground laboratory of Modane, in France. The current status of DAMIC-M and the near future plans will be presented.
The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) searches for interactions between dark matter particles and germanium nuclei in cryogenic detectors. The experiment has achieved a low energy threshold with improved sensitivity to low-mass (<10 GeV/c$^2$) dark matter particles. We present an analysis of the final CDMSlite data set, taken with a different detector than was used for the two previous CDMSlite data sets. This analysis includes a data salting method to protect against bias, improved noise discrimination, background modeling, and the use of profile likelihood methods to search for a dark matter signal in the presence of backgrounds. We achieve an energy threshold of 70 eV and significantly improve the sensitivity for dark matter particles with masses between 2.5 and 10 GeV/c$^2$ compared to previous analyses. We set an upper limit on the dark matter-nucleon scattering cross section in germanium of 5.4$times$10$^{-42}$ cm$^2$ at 5 GeV/c$^2$, a factor of $sim$2.5 improvement over the previous CDMSlite result.
The CRESST experiment aims for a detection of dark matter in the form of WIMPs. These particles are expected to scatter elastically off the nuclei of a target material, thereby depositing energy on the recoiling nucleus. CRESST uses scintillating CaWO4 crystals as such a target. The energy deposited by an interacting particle is primarily converted to phonons which are detected by transition edge sensors. In addition, a small fraction of the interaction energy is emitted from the crystals in the form of scintillation light which is measured in coincidence with the phonon signal by a separate cryogenic light detector for each target crystal. The ratio of light to phonon energy permits the discrimination between the nuclear recoils expected from WIMPs and events from radioactive backgrounds which primarily lead to electron recoils. CRESST has shown the success of this method in a commissioning run in 2007 and, since then, further investigated possibilities for an even better suppression of backgrounds. Here, we report on a new class of background events observed in the course of this work. The consequences of this observation are discussed and we present the current status of the experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا