No Arabic abstract
We study the nonlinear stability of the $(3+1)$-dimensional Minkowski spacetime as a solution of the Einstein vacuum equation. Similarly to our previous work on the stability of cosmological black holes, we construct the solution of the nonlinear initial value problem using an iteration scheme in which we solve a linearized equation globally at each step; we use a generalized harmonic gauge and implement constraint damping to fix the geometry of null infinity. The linear analysis is largely based on energy and vector field methods originating in work by Klainerman. The weak null condition of Lindblad and Rodnianski arises naturally as a nilpotent coupling of certain metric components in a linear model operator at null infinity. Upon compactifying $mathbb{R}^4$ to a manifold with corners, with boundary hypersurfaces corresponding to spacelike, null, and timelike infinity, we show, using the framework of Melroses b-analysis, that polyhomogeneous initial data produce a polyhomogeneous spacetime metric. Finally, we relate the Bondi mass to a logarithmic term in the expansion of the metric at null infinity and prove the Bondi mass loss formula.
We prove definitive results on the global stability of the flat space among solutions of the Einstein-Klein-Gordon system. Our main theorems in this monograph include: (1) A proof of global regularity (in wave coordinates) of solutions of the Einstein-Klein-Gordon coupled system, in the case of small, smooth, and localized perturbations of the stationary Minkowski solution; (2) Precise asymptotics of the metric components and the Klein-Gordon field as the time goes to infinity, including the construction of modified (nonlinear) scattering profiles and quantitative bounds for convergence; (3) Classical estimates on the solutions at null and timelike infinity, such as bounds on the metric components, weak peeling estimates of the Riemann curvature tensor, ADM and Bondi energy identities and estimates, and asymptotic description of null and timelike geodesics.
The definition of quasi-local mass for a bounded space-like region in space-time is essential in several major unsettled problems in general relativity. The quasi-local mass is expected to be a type of flux integral on the boundary two-surface and should be independent of whichever space-like region it bounds. An important idea which is related to the Hamiltonian formulation of general relativity is to consider a reference surface in a flat ambient space with the same first fundamental form and derive the quasi-local mass from the difference of the extrinsic geometries. This approach has been taken by Brown-York and Liu-Yau (see also related works) to define such notions using the isometric embedding theorem into the Euclidean three-space. However, there exist surfaces in the Minkowski space whose quasilocal mass is strictly positive. It appears that the momentum information needs to be accounted for to reconcile the difference. In order to fully capture this information, we use isometric embeddings into the Minkowski space as references. In this article, we first prove an existence and uniqueness theorem for such isometric embeddings. We then solve the boundary value problem for Jangs equation as a procedure to recognize such a surface in the Minkowski space. In doing so, we discover new expression of quasi-local mass. The new mass is positive when the ambient space-time satisfies the dominant energy condition and vanishes on surfaces in the Minkowski space. It also has the nice asymptotic behavior at spatial and null infinity. Some of these results were announced in [29].
We prove the linear stability of slowly rotating Kerr black holes as solutions of the Einstein vacuum equation: linearized perturbations of a Kerr metric decay at an inverse polynomial rate to a linearized Kerr metric plus a pure gauge term. We work in a natural wave map/DeTurck gauge and show that the pure gauge term can be taken to lie in a fixed 7-dimensional space with a simple geometric interpretation. Our proof rests on a robust general framework, based on recent advances in microlocal analysis and non-elliptic Fredholm theory, for the analysis of resolvents of operators on asymptotically flat spaces. With the mode stability of the Schwarzschild metric as well as of certain scalar and 1-form wave operators on the Schwarzschild spacetime as an input, we establish the linear stability of slowly rotating Kerr black holes using perturbative arguments; in particular, our proof does not make any use of special algebraic properties of the Kerr metric. The heart of the paper is a detailed description of the resolvent of the linearization of a suitable hyperbolic gauge-fixed Einstein operator at low energies. As in previous work by the second and third authors on the nonlinear stability of cosmological black holes, constraint damping plays an important role. Here, it eliminates certain pathological generalized zero energy states; it also ensures that solutions of our hyperbolic formulation of the linearized Einstein equation have the stated asymptotics and decay for general initial data and forcing terms, which is a useful feature in nonlinear and numerical applications.
We construct dynamical many-black-hole spacetimes with well-controlled asymptotic behavior as solutions of the Einstein vacuum equation with positive cosmological constant. We accomplish this by gluing Schwarzschild-de Sitter or Kerr-de Sitter black hole metrics into neighborhoods of points on the future conformal boundary of de Sitter space, under certain balance conditions on the black hole parameters. We give a self-contained treatment of solving the Einstein equation directly for the metric, given the scattering data we encounter at the future conformal boundary. The main step in the construction is the solution of a linear divergence equation for trace-free symmetric 2-tensors; this is closely related to Friedrichs analysis of scattering problems for the Einstein equation on asymptotically simple spacetimes.
Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in this case by Mellin transforms. We briefly discuss the role of transformations and observers.