Do you want to publish a course? Click here

The Einstein-Klein-Gordon coupled system: global stability of the Minkowski solution

71   0   0.0 ( 0 )
 Added by Alexandru Ionescu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove definitive results on the global stability of the flat space among solutions of the Einstein-Klein-Gordon system. Our main theorems in this monograph include: (1) A proof of global regularity (in wave coordinates) of solutions of the Einstein-Klein-Gordon coupled system, in the case of small, smooth, and localized perturbations of the stationary Minkowski solution; (2) Precise asymptotics of the metric components and the Klein-Gordon field as the time goes to infinity, including the construction of modified (nonlinear) scattering profiles and quantitative bounds for convergence; (3) Classical estimates on the solutions at null and timelike infinity, such as bounds on the metric components, weak peeling estimates of the Riemann curvature tensor, ADM and Bondi energy identities and estimates, and asymptotic description of null and timelike geodesics.



rate research

Read More

We consider a coupled Wave-Klein-Gordon system in 3D, and prove global regularity and modified scattering for small and smooth initial data with suitable decay at infinity. This system was derived by Wang and LeFloch-Ma as a simplified model for the global nonlinear stability of the Minkowski space-time for self-gravitating massive fields.
146 - Shiwu Yang , Pin Yu 2018
On the three dimensional Euclidean space, for data with finite energy, it is well-known that the Maxwell-Klein-Gordon equations admit global solutions. However, the asymptotic behaviours of the solutions for the data with non-vanishing charge and arbitrary large size are unknown. It is conjectured that the solutions disperse as linear waves and enjoy the so-called peeling properties for pointwise estimates. We provide a gauge independent proof of the conjecture.
66 - Peter Hintz , Andras Vasy 2017
We study the nonlinear stability of the $(3+1)$-dimensional Minkowski spacetime as a solution of the Einstein vacuum equation. Similarly to our previous work on the stability of cosmological black holes, we construct the solution of the nonlinear initial value problem using an iteration scheme in which we solve a linearized equation globally at each step; we use a generalized harmonic gauge and implement constraint damping to fix the geometry of null infinity. The linear analysis is largely based on energy and vector field methods originating in work by Klainerman. The weak null condition of Lindblad and Rodnianski arises naturally as a nilpotent coupling of certain metric components in a linear model operator at null infinity. Upon compactifying $mathbb{R}^4$ to a manifold with corners, with boundary hypersurfaces corresponding to spacelike, null, and timelike infinity, we show, using the framework of Melroses b-analysis, that polyhomogeneous initial data produce a polyhomogeneous spacetime metric. Finally, we relate the Bondi mass to a logarithmic term in the expansion of the metric at null infinity and prove the Bondi mass loss formula.
267 - Daniele Garrisi 2010
We consider a system of two coupled non-linear Klein-Gordon equations. We show the existence of standing waves solutions and the existence of a Lyapunov function for the ground state.
90 - Shiwu Yang 2015
It is known that the Maxwell-Klein-Gordon equations in $mathbb{R}^{3+1}$ admit global solutions with finite energy data. In this paper, we present a new approach to study the asymptotic behavior of these global solutions. We show the quantitative energy flux decay of the solutions with data merely bounded in some weighted energy space. We also establish an integrated local energy decay and a hierarchy of $r$-weighted energy decay. The results in particular hold in the presence of large total charge. This is the first result to give a complete and precise description of the global behavior of large nonlinear charged scalar fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا