Do you want to publish a course? Click here

Localizability in $kappa$-Minkowski Spacetime

73   0   0.0 ( 0 )
 Added by Fedele Lizzi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in this case by Mellin transforms. We briefly discuss the role of transformations and observers.



rate research

Read More

A useful concept in the development of physical models on the $kappa$-Minkowski noncommutative spacetime is that of a curved momentum space. This structure is not unique: several inequivalent momentum space geometries have been identified. Some are associated to a different assumption regarding the signature of spacetime (i.e. Lorentzian vs. Euclidean), but there are inequivalent momentum spaces that can be associated to the same signature and even the same group of symmetries. Moreover, in the literature there are two approaches to the definition of these momentum spaces, one based on the right- (or left-)invariant metrics on the Lie group generated by the $kappa$-Minkowski algebra. The other is based on the construction of $5$-dimensional matrix representation of the $kappa$-Minkowski coordinate algebra. Neither approach leads to a unique construction. Here, we find the relation between these two approaches and introduce a unified approach, capable of describing all momentum spaces, and identify the corresponding quantum group of spacetime symmetries. We reproduce known results and get a few new ones. In particular, we describe the three momentum spaces associated to the $kappa$-Poincare group, which are half of a de Sitter, anti-de Sitter or Minkowski space, and we identify what distinguishes them. Moreover, we find a new momentum space with the geometry of a light cone, associated to a $kappa$-deformation of the Carroll group.
We study the propagation of quantum fields on $kappa$-Minkowsi spacetime. Starting from the non-commutative partition function for a free field written in momentum space we derive the Feynman propagator and analyze the non-trivial singularity structure determined by the group manifold geometry of momentum space. The additional contributions due to such singularity structure result in a deformed field propagation which can be alternatively described in terms of an ordinary field propagation determined by a source with a blurred spacetime profile. We show that the $kappa$-deformed Feynman propagator can be written in terms of vacuum expectation values of a commutative non-local quantum field. For sub-Planckian modes the $kappa$-deformed propagator corresponds to the vacuum expectation value of the time-ordered product of non-local field operators while for trans-Plankian modes this is replaced by the Hadamard two-point function, the vacuum expectation value of the anti-commutator of non-local field operators.
The four dimensional spacetime continuum, as originally conceived by Minkowski, has become the default framework for describing physical laws. Due to its fundamental importance, there have been various attempts to find the origin of this structure from more elementary principles. In this paper, we show how the Minkowski spacetime structure arises naturally from the geometrical properties of three dimensional space when modelled by Clifford geometric algebra of three dimensions $ Cell(Re^3) $. We find that a time-like dimension along with the three spatial dimensions, arise naturally, as well as four additional degrees of freedom that we identify with spin. Within this expanded eight-dimensional arena of spacetime, we find a generalisation of the invariant interval and the Lorentz transformations, with standard results returned as special cases. The value of this geometric approach is shown by the emergence of a fixed speed for light, the laws of special relativity and the form of Maxwells equations, without recourse to any physical arguments.
Ladder operators can be useful constructs, allowing for unique insight and intuition. In fact, they have played a special role in the development of quantum mechanics and field theory. Here, we introduce a novel type of ladder operators, which map a scalar field onto another massive scalar field. We construct such operators, in arbitrary dimensions, from closed conformal Killing vector fields, eigenvectors of the Ricci tensor. As an example, we explicitly construct these objects in anti-de Sitter spacetime (AdS) and show that they exist for masses above the Breitenlohner-Freedman (BF) bound. Starting from a regular seed solution of the massive Klein-Gordon equation (KGE), mass ladder operators in AdS allow one to build a variety of regular solutions with varying boundary condition at spatial infinity. We also discuss mass ladder operator in the context of spherical harmonics, and the relation between supersymmetric quantum mechanics and so-called Aretakis constants in an extremal black hole.
We study Yang-Baxter sigma models with deformed 4D Minkowski spacetimes arising from classical $r$-matrices associated with $kappa$-deformations of the Poincare algebra. These classical $kappa$-Poincare $r$-matrices describe three kinds of deformations: 1) the standard deformation, 2) the tachyonic deformation, and 3) the light-cone deformation. For each deformation, the metric and two-form $B$-field are computed from the associated $r$-matrix. The first two deformations, related to the modified classical Yang-Baxter equation, lead to T-duals of dS$_4$ and AdS$_4$,, respectively. The third deformation, associated with the homogeneous classical Yang-Baxter equation, leads to a time-dependent pp-wave background. Finally, we construct a Lax pair for the generalized $kappa$-Poincare $r$-matrix that unifies the three kinds of deformations mentioned above as special cases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا