No Arabic abstract
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise can enhance coherent quantum transport, which has been proposed as a mechanism behind the high transport efficiencies observed in photosynthetic complexes. This effect has been called environmental-assisted quantum transport (ENAQT). Here, we propose a quantum simulation of the excitation transport in an open quantum network, taking advantage of the high controllability of current trapped-ion experiments. Our scheme allows for the controlled study of various different aspects of the excitation transfer, ranging from the influence of static disorder and interaction range, over the effect of Markovian and non-Markovian dephasing, to the impact of a continuous insertion of excitations. Our proposal discusses experimental error sources and realistic parameters, showing that it can be implemented in state-of-the-art ion-chain experiments.
Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in (approximately) isolated systems. Here, achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work suggests that these capabilities can enable dynamical phases and critical phenomena that exhibit topologically-robust methods to create, protect, and manipulate quantum entanglement that self-correct against large classes of errors. However, to date, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders. In this work, we demonstrate an emergent dynamical symmetry protected topological phase (EDSPT), in a quasiperiodically-driven array of ten $^{171}text{Yb}^+$ hyperfine qubits in Honeywells System Model H1 trapped-ion quantum processor. This phase exhibits edge qubits that are dynamically protected from control errors, cross-talk, and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit-array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders that would enable error-resilient techniques to manipulate quantum information.
We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $alpha geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $beta = d/alpha$ in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a loss of single-spin purity which signifies the build-up of entanglement. The emergence of glassy dynamics in the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched exponential law is explained by a scale-invariant distribution of time scales, to both integrable and non-integrable quantum systems.
Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report on the observation of anomalous relaxation dynamics in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared in a superposition of two-different Rydberg states. The total magnetization is found to exhibit sub-exponential relaxation analogous to classical glassy dynamics, but in the quantum case this relaxation originates from the build-up of non-classical correlations. In both experiment and semi-classical simulations, we find the evolution towards a randomized state is independent of the strength of disorder up to a critical value. This hints towards a unifying description of relaxation dynamics in disordered isolated quantum systems, analogous to the generalization of statistical mechanics to out-of-equilibrium scenarios in classical spin glasses.
Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum many-body systems and possibly improving performance for solving exponentially hard problems, such as optimization and satisfiability. Here we report the implementation of a low-depth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator. We estimate the ground state energy of the Transverse Field Ising Model with long-range interactions with tunable range and we optimize the corresponding combinatorial classical problem by sampling the QAOA output with high-fidelity, single-shot individual qubit measurements. We execute the algorithm with both an exhaustive search and closed-loop optimization of the variational parameters, approximating the ground state energy with up to 40 trapped-ion qubits. We benchmark the experiment with bootstrapping heuristic methods scaling polynomially with the system size. We observe, in agreement with numerics, that the QAOA performance does not degrade significantly as we scale up the system size, and that the runtime is approximately independent from the number of qubits. We finally give a comprehensive analysis of the errors occurring in our system, a crucial step in the path forward towards the application of the QAOA to more general problem instances.
We propose a method of simulating efficiently many-body interacting fermion lattice models in trapped ions, including highly nonlinear interactions in arbitrary spatial dimensions and for arbitrarily distant couplings. We map products of fermionic operators onto nonlocal spin operators and decompose the resulting dynamics in efficient steps with Trotter methods, yielding an overall protocol that employs only polynomial resources. The proposed scheme can be relevant in a variety of fields as condensed-matter or high-energy physics, where quantum simulations may solve problems intractable for classical computers.