Do you want to publish a course? Click here

Glassy dynamics in a disordered Heisenberg quantum spin system

162   0   0.0 ( 0 )
 Added by Titus Franz
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report on the observation of anomalous relaxation dynamics in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared in a superposition of two-different Rydberg states. The total magnetization is found to exhibit sub-exponential relaxation analogous to classical glassy dynamics, but in the quantum case this relaxation originates from the build-up of non-classical correlations. In both experiment and semi-classical simulations, we find the evolution towards a randomized state is independent of the strength of disorder up to a critical value. This hints towards a unifying description of relaxation dynamics in disordered isolated quantum systems, analogous to the generalization of statistical mechanics to out-of-equilibrium scenarios in classical spin glasses.



rate research

Read More

We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $alpha geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $beta = d/alpha$ in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a loss of single-spin purity which signifies the build-up of entanglement. The emergence of glassy dynamics in the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched exponential law is explained by a scale-invariant distribution of time scales, to both integrable and non-integrable quantum systems.
We propose and analyze a scheme for conditional state transfer in a Heisenberg $XXZ$ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also present a possible realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions.
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise can enhance coherent quantum transport, which has been proposed as a mechanism behind the high transport efficiencies observed in photosynthetic complexes. This effect has been called environmental-assisted quantum transport (ENAQT). Here, we propose a quantum simulation of the excitation transport in an open quantum network, taking advantage of the high controllability of current trapped-ion experiments. Our scheme allows for the controlled study of various different aspects of the excitation transfer, ranging from the influence of static disorder and interaction range, over the effect of Markovian and non-Markovian dephasing, to the impact of a continuous insertion of excitations. Our proposal discusses experimental error sources and realistic parameters, showing that it can be implemented in state-of-the-art ion-chain experiments.
Symmetries are well known to have had a profound role in our understanding of nature and are a critical design concept for the realization of advanced technologies. In fact, many symmetry-broken states associated with different phases of matter appear in a variety of quantum technology applications. Such symmetries are normally broken in spatial dimension, however they can also be broken temporally leading to the concept of discrete time symmetries and their associated crystals. Discrete time crystals (DTCs) are a novel state of matter emerging in periodically-driven quantum systems. Typically, they have been investigated assuming individual control operations with uniform rotation errors across the entire system. In this work we explore a new paradigm arising from non-uniform rotation errors, where two dramatically different phases of matter coexist in well defined regions of space. We consider a quantum spin network possessing long-range interactions where different driving operations act on different regions of that network. What results from its inherent symmetries is a system where one region is a DTC, while the second is ferromagnetic. We envision our work to open a new avenue of research on Chimera-like phases of matter where two different phases coexist in space.
We explore a small quantum refrigerator in which the working substance is made of paradigmatic nearest neighbor quantum spin models, the XYZ and the XY model with Dzyaloshinskii-Moriya interactions, consisting of two and three spins, each of which is in contact with a bosonic bath. We identify a specific range of interaction strengths which can be tuned appropriately to ensure a cooling of the selected spin in terms of its local temperature in the weak coupling limit. Moreover, we report that in this domain, when one of the interaction strengths is disordered, the performance of the thermal machine operating as a refrigerator remains almost unchanged instead of degradation, thereby establishing the flexibility of this device. However, to obtain a significant amount of cooling via ordered as well as disordered spin models, we observe that one has to go beyond weak coupling limit and compute the figures of merits by using global master equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا