Do you want to publish a course? Click here

The First APOKASC Catalog of Kepler Dwarf and Subgiant Stars

64   0   0.0 ( 0 )
 Added by Aldo Serenelli
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) We present the first APOKASC catalog of spectroscopic and asteroseismic data for 415 dwarfs and subgiants. Asteroseismic data have been obtained by Kepler in short cadence. The spectroscopic parameters are based on spectra taken as part of APOGEE and correspond to DR13 of SDSS. We analyze our data using two Teff scales, the spectroscopic values from DR13 and those derived from SDSS griz photometry. We use the differences in our results arising from these choices as a test of systematic Teff, and find that they can lead to significant differences in the derived stellar properties. Determinations of surface gravity ($log{g}$), mean density ($rho$), radius ($R$), mass ($M$), and age ($tau$) for the whole sample have been carried out with stellar grid-based modeling. We have assessed random and systematic error sources in the spectroscopic and seismic data, as well as in the grid-based modeling determination of the stellar quantities in the catalog. We provide stellar properties for both Teff scales. The median combined (random and systematic) uncertainties are 2% (0.01 dex; $log{g}$), 3.4% ($rho$), 2.6% ($R$), 5.1% ($M$), and 19% ($tau$) for the photometric Teff scale and 2% ($log{g}$), 3.5% ($rho$), 2.7% ($R$), 6.3% ($M$), and 23% ($tau$) for the spectroscopic scale. Comparisons with stellar quantities in the catalog by Chaplin et al.(2014) highlight the importance of metallicity measurements for determining stellar parameters accurately. We compare our results with those from other sources, including stellar radii determined from TGAS parallaxes and asteroseismic analyses based on individual frequencies. We find a very good agreement in all cases. Comparisons give strong support to the determination of stellar quantities based on global seismology, a relevant result for future missions such as TESS and PLATO. Table 5 corrected (wrongly listed SDSS Teff before).



rate research

Read More

112 - Jennifer A. Johnson 2014
I report on the APOKASC catalog, a joint effort between the Kepler Asteroseismic Science Consortium and the SDSS-III APOGEE spectroscopic survey. It will contain both seismic and spectroscopic values for stars observed by both surveys. I discuss the derivation of spectroscopic parameters and their uncertainties from the H-band spectra delivered by the APOGEE spectrograph, illustrating the sensitivity of stellar spectra to some parameters, such as Teff, and lack of sensitivity to others, such as logg.
We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of order 80 K in Teff , 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with Teff and log g. Our effective temperature scale is between 0-200 K cooler than that expected from the Infrared Flux Method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in Teff and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.
We present a catalog of stellar properties for a large sample of 6676 evolved stars with APOGEE spectroscopic parameters and textit{Kepler} asteroseismic data analyzed using five independent techniques. Our data includes evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed by accounting for differences in their solar reference values. We include theoretically motivated corrections to the large frequency spacing ($Delta u$) scaling relation, and we calibrate the zero point of the frequency of maximum power ($ u_{rm max}$) relation to be consistent with masses and radii for members of star clusters. For most targets, the parameters returned by different pipelines are in much better agreement than would be expected from the pipeline-predicted random errors, but 22% of them had at least one method not return a result and a much larger measurement dispersion. This supports the usage of multiple analysis techniques for asteroseismic stellar population studies. The measured dispersion in mass estimates for fundamental calibrators is consistent with our error model, which yields median random and systematic mass uncertainties for RGB stars of order 4%. Median random and systematic mass uncertainties are at the 9% and 8% level respectively for RC stars.
Solar-like oscillations have been observed by {{it Kepler}} and CoRoT in several solar-type stars. We study the variations of stellar p-mode linewidth as a function of effective temperature. Time series of 9 months of Kepler data have been used. The power spectra of 42 cool main-sequence stars and subgiants have been analysed using both Maximum Likelihood Estimators and Bayesian estimators, providing individual mode characteristics such as frequencies, linewidths and mode heights. Here we report on the mode linewidth at maximum power and at maximum mode height for these 42 stars as a function of effective temperature. We show that the mode linewidth at either maximum mode height or maximum amplitude follows a scaling relation with effective temperature, which is a combination of a power law plus a lower bound. The typical power law index is about 13 for the linewidth derived from the maximum mode height, and about 16 for the linewidth derived from the maximum amplitude while the lower bound is about 0.3 microHz and 0.7 microHz, respectively. We stress that this scaling relation is only valid for the cool main-sequence stars and subgiants, and does not have predictive power outside the temperature range of these stars.
Barium (Ba) dwarfs and CH subgiants are the less-evolved analogues of Ba and CH giants. They are F- to G-type main-sequence stars polluted with heavy elements by a binary companion when the latter was on the Asymptotic Giant Branch (AGB). This companion is now a white dwarf that in most cases cannot be directly detected. We present a large systematic study of 60 objects classified as Ba dwarfs or CH subgiants. Combining radial-velocity measurements from HERMES and SALT high-resolution spectra with radial-velocity data from CORAVEL and CORALIE, we determine the orbital parameters of 27 systems. We also derive their masses by comparing their location in the Hertzsprung-Russell diagram with evolutionary models. We confirm that Ba dwarfs and CH subgiants are not at different evolutionary stages and have similar metallicities, despite their different names. Additionally, Ba giants appear significantly more massive than their main-sequence analogues. This is likely due to observational biases against the detection of hotter main-sequence post-mass-transfer objects. Combining our spectroscopic orbits with the Hipparcos astrometric data, we derive the orbital inclinations and the mass of the WD companion for four systems. Since this cannot be done for all systems in our sample yet (but should be with upcoming Gaia data releases), we also analyse the mass-function distribution of our binaries. We can model this distribution with very narrow mass distributions for the two components and random orbital orientation on the sky. Finally, based on BINSTAR evolutionary models, we suggest that the orbital evolution of low-mass Ba systems can be affected by a second phase of interaction along the Red Giant Branch of the Ba star, impacting on the eccentricities and periods of the giants.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا