Do you want to publish a course? Click here

The Second APOKASC Catalog: The Empirical Approach

65   0   0.0 ( 0 )
 Added by Marc Pinsonneault
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a catalog of stellar properties for a large sample of 6676 evolved stars with APOGEE spectroscopic parameters and textit{Kepler} asteroseismic data analyzed using five independent techniques. Our data includes evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed by accounting for differences in their solar reference values. We include theoretically motivated corrections to the large frequency spacing ($Delta u$) scaling relation, and we calibrate the zero point of the frequency of maximum power ($ u_{rm max}$) relation to be consistent with masses and radii for members of star clusters. For most targets, the parameters returned by different pipelines are in much better agreement than would be expected from the pipeline-predicted random errors, but 22% of them had at least one method not return a result and a much larger measurement dispersion. This supports the usage of multiple analysis techniques for asteroseismic stellar population studies. The measured dispersion in mass estimates for fundamental calibrators is consistent with our error model, which yields median random and systematic mass uncertainties for RGB stars of order 4%. Median random and systematic mass uncertainties are at the 9% and 8% level respectively for RC stars.

rate research

Read More

I report on the APOKASC catalog, a joint effort between the Kepler Asteroseismic Science Consortium and the SDSS-III APOGEE spectroscopic survey. It will contain both seismic and spectroscopic values for stars observed by both surveys. I discuss the derivation of spectroscopic parameters and their uncertainties from the H-band spectra delivered by the APOGEE spectrograph, illustrating the sensitivity of stellar spectra to some parameters, such as Teff, and lack of sensitivity to others, such as logg.
(Abridged) We present the first APOKASC catalog of spectroscopic and asteroseismic data for 415 dwarfs and subgiants. Asteroseismic data have been obtained by Kepler in short cadence. The spectroscopic parameters are based on spectra taken as part of APOGEE and correspond to DR13 of SDSS. We analyze our data using two Teff scales, the spectroscopic values from DR13 and those derived from SDSS griz photometry. We use the differences in our results arising from these choices as a test of systematic Teff, and find that they can lead to significant differences in the derived stellar properties. Determinations of surface gravity ($log{g}$), mean density ($rho$), radius ($R$), mass ($M$), and age ($tau$) for the whole sample have been carried out with stellar grid-based modeling. We have assessed random and systematic error sources in the spectroscopic and seismic data, as well as in the grid-based modeling determination of the stellar quantities in the catalog. We provide stellar properties for both Teff scales. The median combined (random and systematic) uncertainties are 2% (0.01 dex; $log{g}$), 3.4% ($rho$), 2.6% ($R$), 5.1% ($M$), and 19% ($tau$) for the photometric Teff scale and 2% ($log{g}$), 3.5% ($rho$), 2.7% ($R$), 6.3% ($M$), and 23% ($tau$) for the spectroscopic scale. Comparisons with stellar quantities in the catalog by Chaplin et al.(2014) highlight the importance of metallicity measurements for determining stellar parameters accurately. We compare our results with those from other sources, including stellar radii determined from TGAS parallaxes and asteroseismic analyses based on individual frequencies. We find a very good agreement in all cases. Comparisons give strong support to the determination of stellar quantities based on global seismology, a relevant result for future missions such as TESS and PLATO. Table 5 corrected (wrongly listed SDSS Teff before).
We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of order 80 K in Teff , 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with Teff and log g. Our effective temperature scale is between 0-200 K cooler than that expected from the Infrared Flux Method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in Teff and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.
Magnetized stars exhibit periodic variations of their longitudinal global magnetic fields, $B_e$, owing to rotation. Here, we present the second catalog of averaged stellar magnetic rotational phase curves and their parameters derived from a compilation of the published observational data and personal communications for 350 stars of various spectral types, which were published up to the end of December 2019. Magnetic Ap and Bp stars constitute the most numerous subset in the catalog (215 objects). Phase curves were obtained by fitting either a sinusoid or a double sine wave to series of the observed $B_e$ measurements using the least squares method. For some stars, we present magnetic phase curves derived from time series of the surface magnetic field, $B_s$, or obtained improved values of the rotational period, $P_{rm rot}$. We have also identified eight stars in our catalog that host planets or planetary systems.
Aims. We present the second AGILE-GRID Catalog (2AGL) of {gamma}-ray sources in the 100 MeV-10 GeV energy range. Methods. With respect to previous AGILE-GRID catalogs, the current 2AGL Catalog is based on the first 2.3 years of science data from the AGILE mission (the so called pointing mode) and incorporates more data and several analysis improvements, including better calibrations at the event reconstruction level, an updated model for the Galactic diffuse gamma-ray emission, a refined procedure for point-like source detection, and the inclusion of a search for extended {gamma}-ray sources. Results. The 2AGL Catalog includes 175 high-confidence sources (above 4{sigma} significance) with their location regions and spectral properties, and a variability analysis with 4-day light curves for the most significant ones. Relying on the error region of each source position, including systematic uncertainties, 121 sources are considered as positionally associated with known couterparts at different wavelengths or detected by other {gamma}-ray instruments. Among the identified or associated sources, 62 are Active Galactic Nuclei (AGNs) of the blazar class. Pulsars represent the largest Galactic source class, with 40 associated pulsars, 7 of them with detected pulsation; 8 Supernova Remnants and 4 high-mass X-ray binaries have also been identified. A substantial number of 2AGL sources are unidentified: for 54 sources no known counterpart is found at different wavelengths. Among these sources, we discuss a sub-class of 29 AGILE-GRID-only {gamma}-ray sources that are not present in 1FGL, 2FGL or 3FGL catalogs; the remaining sources are unidentified in both 2AGL and 3FGL Catalogs. We also present an extension of the analysis of 2AGL sources detected in the 50-100 MeV energy range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا