No Arabic abstract
The layered WHM - type (W=Zr/Hf/La, H=Si/Ge/Sn/Sb, M=S/Se/Te) materials represent a large family of topological semimetals, which provides an excellent platform to study the evolution of topological semimetal state with the fine tuning of spin-orbit coupling and structural dimensionality for various combinations of W, H and M elements. In this work, through high field de Haas-van Alphen (dHvA) quantum oscillation studies, we have found evidence for the predicted topological non-trivial bands in ZrSnTe. Furthermore, from the angular dependence of quantum oscillation frequency, we have revealed the three-dimensional Fermi surface topologies of this layered material owing to strong interlayer coupling.
By employing angle-resolved photoemission spectroscopy combined with first-principles calculations, we performed a systematic investigation on the electronic structure of LaBi, which exhibits extremely large magnetoresistance (XMR), and is theoretically predicted to possess band anticrossing with nontrivial topological properties. Here, the observations of the Fermi-surface topology and band dispersions are similar to previous studies on LaSb [Phys. Rev. Lett. 117, 127204 (2016)], a topologically trivial XMR semimetal, except the existence of a band inversion along the $Gamma$-$X$ direction, with one massless and one gapped Dirac-like surface state at the $X$ and $Gamma$ points, respectively. The odd number of massless Dirac cones suggests that LaBi is analogous to the time-reversal $Z_2$ nontrivial topological insulator. These findings open up a new series for exploring novel topological states and investigating their evolution from the perspective of topological phase transition within the family of rare-earth monopnictides.
By using angle-resolved photoemission spectroscopy combined with first-principles calculations, we reveal that the topmost unit cell of ZrSnTe crystal hosts two-dimensional (2D) electronic bands of topological insulator (TI) state, though such a TI state is defined with a curved Fermi level instead of a global band gap. Furthermore, we find that by modifying the dangling bonds on the surface through hydrogenation, this 2D band structure can be manipulated so that the expected global energy gap is most likely to be realized. This facilitates the practical applications of 2D TI in heterostructural devices and those with surface decoration and coverage. Since ZrSnTe belongs to a large family of compounds having the similar crystal and band structures, our findings shed light on identifying more 2D TI candidates and superconductor-TI heterojunctions supporting topological superconductors.
Topological Weyl semimetals (TWSs) are exotic crystals possessing emergent relativistic Weyl fermions connected by unique surface Fermi-arcs (SFAs) in their electronic structures. To realize the TWS state, certain symmetry (such as the inversion or time reversal symmetry) must be broken, leading to a topological phase transition (TPT). Despite the great importance in understanding the formation of TWSs and their unusual properties, direct observation of such a TPT has been challenging. Here, using a recently discovered magnetic TWS Co3Sn2S2, we were able to systematically study its TPT with detailed temperature dependence of the electronic structures by angle-resolved photoemission spectroscopy. The TPT with drastic band structures evolution was clearly observed across the Curie temperature (TC = 177 K), including the disappearance of the characteristic SFAs and the recombination of the spin-split bands that leads to the annihilation of Weyl points with opposite chirality. These results not only reveal important insights on the interplay between the magnetism and band topology in TWSs, but also provide a new method to control their exotic physical properties.
The ZrSiS family of compounds hosts various exotic quantum phenomena due to the presence of both topological nonsymmorphic Dirac fermions and nodal-line fermions. In this material family, the LnSbTe (Ln= lanthanide) compounds are particularly interesting owing to the intrinsic magnetism from magnetic Ln which leads to new properties and quantum states. In this work, the authors focus on the previously unexplored compound SmSbTe. The studies reveal a rare combination of a few functional properties in this material, including antiferromagnetism with possible magnetic frustration, electron correlation enhancement, and Dirac nodal-line fermions. These properties enable SmSbTe as a unique platform to explore exotic quantum phenomena and advanced functionalities arising from the interplay between magnetism, topology, and electronic correlations.
Chiral fermions in solid state feature Fermi arc states, connecting the surface projections of the bulk chiral nodes. The surface Fermi arc is a signature of nontrivial bulk topology. Unconventional chiral fermions with an extensive Fermi arc traversing the whole Brillouin zone have been theoretically proposed in CoSi. Here, we use scanning tunneling microscopy / spectroscopy to investigate quasiparticle interference at various terminations of a CoSi single crystal. The observed surface states exhibit chiral fermion-originated characteristics. These reside on (001) and (011) but not (111) surfaces with pi-rotation symmetry, spiral with energy, and disperse in a wide energy range from ~-200 to ~+400 mV. Owing to the high-energy and high-space resolution, a spin-orbit coupling-induced splitting of up to ~80 mV is identified. Our observations are corroborated by density functional theory and provide strong evidence that CoSi hosts the unconventional chiral fermions and the extensive Fermi arc states.