Do you want to publish a course? Click here

Emergence of topological bands on the surface of ZrSnTe crystal

66   0   0.0 ( 0 )
 Added by Rui Lou
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

By using angle-resolved photoemission spectroscopy combined with first-principles calculations, we reveal that the topmost unit cell of ZrSnTe crystal hosts two-dimensional (2D) electronic bands of topological insulator (TI) state, though such a TI state is defined with a curved Fermi level instead of a global band gap. Furthermore, we find that by modifying the dangling bonds on the surface through hydrogenation, this 2D band structure can be manipulated so that the expected global energy gap is most likely to be realized. This facilitates the practical applications of 2D TI in heterostructural devices and those with surface decoration and coverage. Since ZrSnTe belongs to a large family of compounds having the similar crystal and band structures, our findings shed light on identifying more 2D TI candidates and superconductor-TI heterojunctions supporting topological superconductors.



rate research

Read More

86 - Jin Hu , Yanglin Zhu , David Graf 2017
The layered WHM - type (W=Zr/Hf/La, H=Si/Ge/Sn/Sb, M=S/Se/Te) materials represent a large family of topological semimetals, which provides an excellent platform to study the evolution of topological semimetal state with the fine tuning of spin-orbit coupling and structural dimensionality for various combinations of W, H and M elements. In this work, through high field de Haas-van Alphen (dHvA) quantum oscillation studies, we have found evidence for the predicted topological non-trivial bands in ZrSnTe. Furthermore, from the angular dependence of quantum oscillation frequency, we have revealed the three-dimensional Fermi surface topologies of this layered material owing to strong interlayer coupling.
We demonstrate that the metallic topological surface states wrap on all sides the 3D topological crystalline insulator SnTe. This is achieved by studying oscillatory quantum magneto-transport and magnetization at tilted magnetic fields which enables us to observe simultaneous contributions from neighbouring sample sides. Taking into account pinning of the Fermi energy by the SnTe reservoir we successfully describe theoretically the de Haas-van Alphen oscillations of magnetization. The determined pi-Berry phase of surface states confirms their Dirac fermion character. We independently observe oscillatory contributions of magneto-transport and magnetization originating from the bulk SnTe reservoir of high hole density. It is concluded that the bulk and surface Landau states exist in parallel. Our main result that the bulk reservoir is surrounded on all sides by the topological surface states has an universal character.
136 - R. Wu , J.-Z. Ma , L.-X. Zhao 2016
Two-dimensional (2D) topological insulators (TIs) with a large bulk band-gap are promising for experimental studies of the quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap 2D TI candidates, only few of them have been experimentally verified. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that the top monolayer of ZrTe5 crystals hosts a large band gap of ~100 meV on the surface and a finite constant density-of-states within the gap at the step edge. Our first-principles calculations confirm the topologically nontrivial nature of the edge states. These results demonstrate that the top monolayer of ZrTe5 crystals is a large-gap 2D TI suitable for topotronic applications at high temperature.
We have investigated spin-electricity conversion on surface states of bulk-insulating topological insulator (TI) materials using a spin pumping technique. The sample structure is Ni-Fe|Cu|TI trilayers, in which magnetic proximity effects on the TI surfaces are negligibly small owing to the inserted Cu layer. Voltage signals produced by the spin-electricity conversion are clearly observed, and enhanced with decreasing temperature in line with the dominated surface transport at lower temperatures. The efficiency of the spin-electricity conversion is greater for TI samples with higher resistivity of bulk states and longer mean free path of surface states, consistent with the surface spin-electricity conversion.
The fermionic self-energy on the surface of a topological insulator proximity coupled to ferro- and antiferromagnetic insulators is studied. An enhanced electron-magnon coupling is achieved by allowing the electrons on the surface of the topological insulator to have a different exchange coupling to the two sublattices of the antiferromagnet. Such a system is therefore seen as superior to a ferromagnetic interface for the realization of magnon-mediated superconductivity. The increased electron-magnon-coupling simultaneously increases the self-energy effects. A careful study of this has been lacking, and in this paper we show how the inverse quasiparticle lifetime and energy renormalization on the surface of the topological insulator can be kept low close to the Fermi level by using a magnetic insulator with a sufficient easy-axis anisotropy. We find that the antiferromagnetic case is most interesting both from a theoretical and an experimental standpoint due to the increased electron-magnon coupling, combined with a reduced need for easy-axis anisotropy compared to the ferromagnetic case. We also consider a set of material and instrumental parameters where these self-energies should be measurable in angle-resolved photoemission spectroscopy (ARPES) experiments, paving the way for a measurement of the interfacial exchange coupling strength.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا