No Arabic abstract
For every group $G$, we introduce the set of hyperbolic structures on $G$, denoted $mathcal{H}(G)$, which consists of equivalence classes of (possibly infinite) generating sets of $G$ such that the corresponding Cayley graph is hyperbolic; two generating sets of $G$ are equivalent if the corresponding word metrics on $G$ are bi-Lipschitz equivalent. Alternatively, one can define hyperbolic structures in terms of cobounded $G$-actions on hyperbolic spaces. We are especially interested in the subset $mathcal{AH}(G)subseteq mathcal{H}(G)$ of acylindrically hyperbolic structures on $G$, i.e., hyperbolic structures corresponding to acylindrical actions. Elements of $mathcal{H}(G)$ can be ordered in a natural way according to the amount of information they provide about the group $G$. The main goal of this paper is to initiate the study of the posets $mathcal{H}(G)$ and $mathcal{AH}(G)$ for various groups $G$. We discuss basic properties of these posets such as cardinality and existence of extremal elements, obtain several results about hyperbolic structures induced from hyperbolically embedded subgroups of $G$, and study to what extent a hyperbolic structure is determined by the set of loxodromic elements and their translation lengths.
We characterize the Lie groups with finitely many connected components that are $O(u)$-bilipschitz equivalent (almost quasiisometric in the sense that the sublinear function $u$ replaces the additive bounds of quasiisometry) to the real hyperbolic space, or to the complex hyperbolic plane. The characterizations are expressed in terms of deformations of Lie algebras and in terms of pinching of sectional curvature of left-invariant Riemannian metrics in the real case. We also compare sublinear bilipschitz equivalence and coarse equivalence, and prove that every coarse equivalence between the logarithmic coarse structures of geodesic spaces is a $O(log)$-bilipschitz equivalence. The Lie groups characterized are exactly those whose logarithmic coarse structure is equivalent to that of a real hyperbolic space or the complex hyperbolic plane.
We generalize Gruber--Sistos construction of the coned--off graph of a small cancellation group to build a partially ordered set $mathcal{TC}$ of cobounded actions of a given small cancellation group whose smallest element is the action on the Gruber--Sisto coned--off graph. In almost all cases $mathcal{TC}$ is incredibly rich: it has a largest element if and only if it has exactly 1 element, and given any two distinct comparable actions $[Gcurvearrowright X] preceq [Gcurvearrowright Y]$ in this poset, there is an embeddeding $iota:P(omega)tomathcal{TC}$ such that $iota(emptyset)=[Gcurvearrowright X]$ and $iota(mathbb N)=[Gcurvearrowright Y]$. We use this poset to prove that there are uncountably many quasi--isometry classes of finitely generated group which admit two cobounded acylindrical actions on hyperbolic spaces such that there is no action on a hyperbolic space which is larger than both.
We discuss a problem posed by Gersten: Is every automatic group which does not contain Z+Z subgroup, hyperbolic? To study this question, we define the notion of n-tracks of length n, which is a structure like Z+Z, and prove its existence in the non-hyperbolic automatic groups with mild conditions. As an application, we show that if a group acts effectively, cellularly, properly discontinuously and cocompactly on a CAT(0) cube complex and its quotient is weakly special, then the above question is answered affirmatively.
The aim of this short note is to provide a proof of the decidability of the generalized membership problem for relatively quasi-convex subgroups of finitely presented relatively hyperbolic groups, under some reasonably mild conditions on the peripheral structure of these groups. These hypotheses are satisfied, in particular, by toral relatively hyperbolic groups.
Let $Gamma$ be a torsion-free hyperbolic group. We study $Gamma$--limit groups which, unlike the fundamental case in which $Gamma$ is free, may not be finitely presentable or geometrically tractable. We define model $Gamma$--limit groups, which always have good geometric properties (in particular, they are always relatively hyperbolic). Given a strict resolution of an arbitrary $Gamma$--limit group $L$, we canonically construct a strict resolution of a model $Gamma$--limit group, which encodes all homomorphisms $Lto Gamma$ that factor through the given resolution. We propose this as the correct framework in which to study $Gamma$--limit groups algorithmically. We enumerate all $Gamma$--limit groups in this framework.