Do you want to publish a course? Click here

On the logarithmic coarse structures of Lie groups and hyperbolic spaces

79   0   0.0 ( 0 )
 Added by Gabriel Pallier
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We characterize the Lie groups with finitely many connected components that are $O(u)$-bilipschitz equivalent (almost quasiisometric in the sense that the sublinear function $u$ replaces the additive bounds of quasiisometry) to the real hyperbolic space, or to the complex hyperbolic plane. The characterizations are expressed in terms of deformations of Lie algebras and in terms of pinching of sectional curvature of left-invariant Riemannian metrics in the real case. We also compare sublinear bilipschitz equivalence and coarse equivalence, and prove that every coarse equivalence between the logarithmic coarse structures of geodesic spaces is a $O(log)$-bilipschitz equivalence. The Lie groups characterized are exactly those whose logarithmic coarse structure is equivalent to that of a real hyperbolic space or the complex hyperbolic plane.



rate research

Read More

We introduce an obstruction to the existence of a coarse embedding of a given group or space into a hyperbolic group, or more generally into a hyperbolic graph of bounded degree. The condition we consider is admitting exponentially many fat bigons, and it is preserved by a coarse embedding between graphs with bounded degree. Groups with exponential growth and linear divergence (such as direct products of two groups one of which has exponential growth, solvable groups that are not virtually nilpotent, and uniform higher-rank lattices) have this property and hyperbolic graphs do not, so the former cannot be coarsely embedded into the latter. Other examples include certain lacunary hyperbolic and certain small cancellation groups.
For every group $G$, we introduce the set of hyperbolic structures on $G$, denoted $mathcal{H}(G)$, which consists of equivalence classes of (possibly infinite) generating sets of $G$ such that the corresponding Cayley graph is hyperbolic; two generating sets of $G$ are equivalent if the corresponding word metrics on $G$ are bi-Lipschitz equivalent. Alternatively, one can define hyperbolic structures in terms of cobounded $G$-actions on hyperbolic spaces. We are especially interested in the subset $mathcal{AH}(G)subseteq mathcal{H}(G)$ of acylindrically hyperbolic structures on $G$, i.e., hyperbolic structures corresponding to acylindrical actions. Elements of $mathcal{H}(G)$ can be ordered in a natural way according to the amount of information they provide about the group $G$. The main goal of this paper is to initiate the study of the posets $mathcal{H}(G)$ and $mathcal{AH}(G)$ for various groups $G$. We discuss basic properties of these posets such as cardinality and existence of extremal elements, obtain several results about hyperbolic structures induced from hyperbolically embedded subgroups of $G$, and study to what extent a hyperbolic structure is determined by the set of loxodromic elements and their translation lengths.
We define the notion of a negatively curved tangent bundle of a metric measured space. We prove that, when a group $G$ acts on a metric measured space $X$ with a negatively curved tangent bundle, then $G$ acts on some $L^p$ space, and that this action is proper under suitable assumptions. We then check that this result applies to the case when $X$ is a hyperbolic space.
168 - Carolyn Abbott , David Hume 2018
We generalize Gruber--Sistos construction of the coned--off graph of a small cancellation group to build a partially ordered set $mathcal{TC}$ of cobounded actions of a given small cancellation group whose smallest element is the action on the Gruber--Sisto coned--off graph. In almost all cases $mathcal{TC}$ is incredibly rich: it has a largest element if and only if it has exactly 1 element, and given any two distinct comparable actions $[Gcurvearrowright X] preceq [Gcurvearrowright Y]$ in this poset, there is an embeddeding $iota:P(omega)tomathcal{TC}$ such that $iota(emptyset)=[Gcurvearrowright X]$ and $iota(mathbb N)=[Gcurvearrowright Y]$. We use this poset to prove that there are uncountably many quasi--isometry classes of finitely generated group which admit two cobounded acylindrical actions on hyperbolic spaces such that there is no action on a hyperbolic space which is larger than both.
Poincare profiles are a family of analytically defined coarse invariants, which can be used as obstructions to the existence of coarse embeddings between metric spaces. In this paper we calculate the Poincare profiles of all connected unimodular Lie groups, Baumslag-Solitar groups and Thurston geometries, demonstrating two substantially different types of behaviour. In the case of Lie groups, we obtain a dichotomy which extends both the dichotomy separating rank one and higher rank semisimple Lie groups and the dichotomy separating connected solvable unimodular Lie groups of polynomial and exponential growth. We provide equivalent algebraic, quasi-isometric and coarse geometric formulations of this dichotomy. Our results have many consequences for coarse embeddings, for instance we deduce that for groups of the form $Ntimes S$, where $N$ is a connected nilpotent Lie group, and $S$ is a simple Lie group of real rank 1, both the growth exponent of $N$, and the Ahlfors-regular conformal dimension of $S$ are non-decreasing under coarse embeddings. These results are new even in the quasi-isometric setting and give obstructions to quasi-isometric embeddings which in many cases are stronger than those previously obtained by Buyalo-Schroeder.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا