Do you want to publish a course? Click here

Complex Optical/UV and X-ray Variability of the Seyfert 1 galaxy 1H 0419-577

112   0   0.0 ( 0 )
 Added by Main Pal Rajan
 Publication date 2017
  fields Physics
and research's language is English
 Authors Main Pal




Ask ChatGPT about the research

We present detailed broadband UV/optical to X-ray spectral variability of the Seyfert 1 galaxy 1H 0419-577 using six XMM-Newton observations performed during 2002-2003. These observations covered a large amplitude variability event in which the soft X-ray (0.3-2 keV) count rate increased by a factor of ~4 in six months. The X-ray spectra during the variability are well described by a model consisting of a primary power law, blurred and distant reflection. The 2-10 keV power-law flux varied by a factor ~7 while the 0.3-2 keV soft X-ray excess flux derived from the blurred reflection component varied only by a factor of ~2. The variability event was also observed in the optical and UV bands but the variability amplitudes were only at the 6-10% level. The variations in the optical and UV bands appear to follow the variations in the X-ray band. During the rising phase, the optical bands appear to lag behind the UV band but during the declining phase, the optical bands appear to lead the UV band. Such behavior is not expected in the reprocessing models where the optical/UV emission is the result of reprocessing of X-ray emission in the accretion disc. The delayed contribution of the broad emission lines in the UV band or the changes in the accretion disc/corona geometry combined with X-ray reprocessing may give rise to the observed behavior of the variations.



rate research

Read More

135 - K.A. Pounds 2004
Previous observations of the luminous Seyfert 1 galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma ~ 1.9 to a much flatter power law of Gamma ~ 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma ~ 1.0), which exhibits broad features that can be modelled with the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419-577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicates the dominant spectral variability occurs via a steep power law component.
We analyse eight XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Arakelian 564 (Ark 564). These observations, separated by ~6 days, allow us to look for correlations between the simultaneous UV emission (from the Optical Monitor) with not only the X-ray flux but also with the different X-ray spectral parameters. The X-ray spectra from all the observations are found to be adequately fitted by a double Comptonization model where the soft excess and the hard X-ray power law are represented by thermal Comptonization in a low temperature plasma and hot corona, respectively. Apart from the fluxes of each component, the hard X-ray power law index is found to be variable. These results suggest that the variability is associated with changes in the geometry of the inner region. The UV emission is found to be variable and well correlated with the high energy index while the correlations with the fluxes of each component are found to be weaker. Using viscous time-scale arguments we rule out the possibility that the UV variation is due to fluctuating accretion rate in the outer disc. If the UV variation is driven by X-ray reprocessing, then our results indicate that the strength of the X-ray reprocessing depends more on the geometry of the X-ray producing inner region rather than on the X-ray luminosity alone.
The Seyfert 1 galaxy 1H 0419-577 hosts a $sim$kpc extended outflow that is evident in the [ion{O}{iii}] image and that is also detected as a warm absorber in the UV/X-ray spectrum. Here, we analyze a $sim$30 ks Chandra-ACIS X-ray image, with the aim of resolving the diffuse extranuclear X-ray emission and of investigating its relationship with the galactic outflow. Thanks to its sub-arcsecond spatial resolution, Chandra resolves the circumnuclear X-ray emission, which extends up to a projected distance of at least $sim$16 kpc from the center. The morphology of the diffuse X-ray emission is spherically symmetrical. We could not recover a morphological resemblance between the soft X-ray emission and the ionization bicone that is traced by the [ion{O}{iii}] outflow. we argue that the photoionized gas nebula must be distributed mostly along the polar directions, outside our line of sight. In this geometry, the X-ray/UV warm absorber must trace a different gas component, physically disconnected from the emitting gas, and located closer to the equatorial plane.
106 - K.A. Pounds 2004
An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below ~1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was `X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable `soft excess then appears to be an artefact of absorption of the underlying continuum while the `core soft emission can be attributed to recombination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.
151 - Th. Boller , T. Liu , P. Weber 2020
The ultra-soft narrow-line Seyfert 1 galaxy 1H 0707-495 is a well-known and highly variable active galactic nucleus (AGN), with a complex, steep X-ray spectrum, and has been studied extensively with XMM-Newton. 1H 0707-495 was observed with the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) aboard the Spectrum-Roentgen-Gamma (SRG) mission on October 11, 2019, for about 60,000 seconds as one of the first calibration and pointed verification phase (CalPV) observations. The eROSITA light curves show significant variability in the form of a flux decrease by a factor of 58 with a 1 sigma error confidence interval between 31 and 235. This variability is primarily in the soft band, and is much less extreme in the hard band. No strong ultraviolet variability has been detected in simultaneous XMM-Newton Optical Monitor observations. The UV emission is about 10^44 erg s^-1, close to the Eddington limit. 1H 0707-495 entered the lowest hard flux state seen in 20 years of XMM-Newton observations. In the eROSITA All-Sky Survey (eRASS) observations taken in April 2020, the X-ray light curve is still more variable in the ultra-soft band, but with increased soft and hard band count rates more similar to previously observed flux states. A model including relativistic reflection and a variable partial covering absorber is able to fit the spectra and provides a possible explanation for the extreme light-curve behaviour. The absorber is probably ionised and therefore more transparent to soft X-rays. This leaks soft X-rays in varying amounts, leading to large-amplitude soft-X-ray variability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا